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ABSTRACT
This paper contains progress reports of NASA-sponsored

studies in the areas of space flight and guidance theory.
The studies are carried on by several universities and
industrial companies. This progress report covers the
period from July 18, 1963, to December 18, 1963. The
technical supervisor of the contracts is W. E. Miner,
Deputy Chief of the Astrodynamics aﬁd Guidance Theory

Division, Aero-Astrodynamics laboratory, George C. Marshall

Space Flight Center.
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SUMMARY

This paper contains progress reports of NASA-sponsored
studies in the areas of space flight and guidance theory. -
The studies are carried on by several universities and
Industrial. companies. This progress report covers the
period from July 18, 1963 to December 18, 1963. The
technical supervisor of the contracts i1s W. E. Miner,

Deputy Chief of the Astrodynamics and Guidance Theory |
Division, Aero-Astrodynamics Laboratory, George C. Marshall
Space Flight Center. _

INTRODUCTION

This report contains fifteen papers, the subject matter
of which lies in the areas of guidance and space flight theory.
These papers were written by investigators employed at agencies
under contract to Marshall Space Flight Center.

This report is the fifth of the "Progress Reports" and
covers the period from July 18, 1963 to December 18, 1963.
Information given in Progress Reports 1 through 4 will not
be repeated here.

The agenciles contributing and their fields of major
interest are:



Field of Interest Agency

Grumman Aircraft Engineering Corp.
Auburn University

Analytical Mechanics Associates
General Electric Company

Calculus of Variations

Impulse Orbit Transfer North American Aviation, Inc.

Matrix Operations University of Kentucky

University of North Carolina
Northeast Louisiana State College
Georgia Institute of Technology

Large Computer
Exploitation

Martin Merrita Company
Minneapolis Honeywell Regulator Co.

e

Stability

Low Thrust Trajectories |[Aeronutronics (Ford)

The objectives of this introduction are to review and
summarize the contributions of each agency.

The first paper by McGill and Kenneth of Grumman
Alrcraft Englneering Corporation describes a computational
procedure for obtaining the solution to a nonlinear two-point
boundary value differential equations problem. The procedure
is based on a generalization of the Newton-Raphson technique
as a contraction mapping in a suitably defined metric space.
Thus, the solution is arrived at through a sequence of
solutions to related systems of linear differential equations
rather than the usual sequence of approximate solutions to
the nonlinear problem. Analytical estimates to convergence
properties are not given, but the numerical results given
indicate that convergence might be rapid in many cases 1if
some feel for the character of the solution furnishes a
reagsonable arbitrary initial function. It appears that the
procedure may develop into an economical tool for isolating
extremal trajectories.

The second paper by Harmon and Shaw of Auburn University
develops a system of differential equations that defines
optimum reentry trajectories corresponding to a specified
hardware arrangement. The attitude of the reentry vehicle
is assumed to be controlled in one degree of freedom (yaw
angle of attack) by means of an offset center of gravity
and roll jets. The remaining degrees of freedom in attitude




are constrained by relationships resulting from assumed
steady state solutions. The minimized variable is the time
integral of the total drag squared. The equations are
developed in some detall and presented with instructions in
a form amenable to coding on a high speed computer, so that
numerical studles could be carried out to determine how
much the minimized variable 1s increased and target acquisi-
tion abllity is decreased by these hardware constraints.

Some work toward the analytical or direct derivation
of guidance functions is contalned in the third paper by
Kelly of Analytical Mechanics Associates, Inc. The approach
is an application of perturbation theory to the Euler-Lagrange
equations with expansions truncated after the second order
ferms. The theory 1s applied to a simple problem for
11lustrating the theory and providing some information on
the contribution of second order terms compared to that of
first order terms. Some difficulties may be encountered
when the procedures as given are applied to our actual
problems. The on-board storage of the nominal optimum
trajectory is one, and the required closed form solution
to the differential equations 1s another. These difficulties
can probably be overcome. An approach which is theoretically
very similar to Dr. Kelly's has been carried out by R. Silber
of Southern Illinols University. The method is being coded
and evaluated in-house for optimum flight assuming a
spherical earth and produces a guldance function approxi-
mation in the usual polynomial form.

The fourth paper by Pines of Analytical Mechanics
Associates, Inc. suggests a possible basis for lterative
solutions to the two-point boundary value problem associated
with trajectory optimization by indirect methods. He proposes
to use the impulsive thrust solution with the constants of
the motion that he derives, and determine initial wvalues of
the adjoint variables as limits of the values for the finite
fhrust case as thrust increases without bound. This would
furnish the first guess in some iterative process for
solving a finite thrust case. The desired finite thrust
solution might be arrived at through some sequence of such
iferative solutions. However, for some missions 1t may be
nearly as difficult to solve the optimization problem with
impulsive thrust as it 1s to solve the original finite
thrust problem. Numerical evaluations of the method are
yet to be made.



Mr. Cavoti of General Electric in the fifth paper
treats a simplified problem of optimum retrothrust in
an inverse square gravitational field. The principal
restrictions are a thrust direction always tangent to the
flight path, and end-conditions independent of range and
time. Under these conditions, he finds that the optimum
thrust magnitude program for bounded variable retrothrust
might consist of subarcs of minimum, variable intermediate,
or maximum thrust. A closed form solution is found for the
intermediate thrust case that implies a constant velocity
magnltude over such an arc. There is some question as to
whether these results can be helpful toward the solution
of the unrestricted problem.

The sixth paper by Gentry Lee of North American Aviation,
Inc. shows - for the rather restricted subfamily of transfer
orbits characterized as coplanar-elliptical and of equal
angular momentum - that there exists a specific family of
two impulse transfers that use no more impulse than a one
impulse transfer at the intersection of the two orbits.
The results of this study represent a step toward the
solution of the n-impulse transfer problem in which it has
been conjectured that an n-impulse transfer would require
less fuel than any transfer using fewer impulses.

The seventh paper is written by D. F. Bender of North
American Aviation, Inc. 1In this paper as in the companion
paper by Gentry Lee, a comparison is made between one impulse
and two impulse transfers between orbits of a rather
restricted family. This family consists of nearly tangent
coplanar elliptical orbits. It 1s found that over a narrow
range of orbit shapes for these shallowly intersecting
orbits, one impulse and optimum two impulse transfers require
practically identical total impulses.

The eighth paper is written by the University of
Kentucky Team. It presents a matrix method for representing
the general cubic

N oijk *1 X5 *x

i,J,k

and for finding the coefficients of this cubic subjected
to the transformation xi=yi+8i, 1=1,2,...,n. This
procedure enables one to compute the coefficients of the
new cuble, in yiyjyk, in any order and to apply approxi-
mation techniques to the result.




The ninth paper, written by Shigemichi Suzuki of the
University of North Carolina, describes new iterative
algorithms as alternatives to solving problem (a) as set
forth in Progress Report No. 4. Problem (a) is: given
a fixed form for the ratio of linear combinations of known
functions, coefflcients are sought such that the maximum
deviation over a finite point set is a minimum (Tchebycheff).
The auxiliary functions are optimized under the constraints
given previously. These algorithms may provide more
effective means of solving the problem than those presented
in Progress Report No. 4. These methods will also be
evaluated by MSFC on the problem of generating steering and
time of cutoff functions.

The tenth paper, "Inverse Estimation" by G. W. Adkins,
also of the University of North Carolina, presents a novel
approach for empirically fitting guidance functions. The
procedure utilizes an algorithm which specifies the control
variables for a glven sample of the response variables. 1In
this process of function approximation, the role of indepen-
dent and dependent variables are reversed. The procedure
has not been fully evaluated, but at this time it would
seem impractical for use.

The eleventh paper written by the group from Northeast
Loulisiana State College describes a technique for obtaining
the numerical values of a function which yields an error
in the sense of least squares that is equal to a specified
tolerance. In the notation of the paper the least squares
error 1s defined as

N
E =[x 2, A 91l
1=0

where the vectors %4 and Ei have n components corresponding
to the number of polnts used. Starting with the expression
for E, a method is developed for determining the n numerical
values of the components of the vector 9N Such that

1
Ix - gf: Ay 942 = 8 (a specified tolerance)-
i=0

More effort 1s needed to determine a suitable functional
form for the vector gy+1 or to find a use for the numerical
values of its components.



The twelfth paper, prepared by the group at Georgia
Institute of Technology, describes a method of obtaining
least squares estimates of multivariable polynomials. By
using a particular polynomial form, called a balanced
polynomial, the "step procedure" method yields least squares
estimates while reducing the order of the matrix to be
inverted. The method has not been applied but shows promise.

The thirteenth paper was written by D. L. Lukes of
Minneapolis-Honeywell Regulator Company. In thils paper 1t
is assumed that some open loop (reference) trajectory and
the required control have been determined for a given
dynamical system. The problem of extending the control to
a neighborhood of the reference trajectory to obtain a
feedback control that will drive the system to the desired
final state is investigated. The technique used is based
on the construction of a Lyapunov function defined in some
neighborhood of the reference trajJectory. This technique
differs from the classical linearization of the system
equations. PFurthermore, stability 1s assured. It appears
that the same technique may be applied to an n-dimensional
system with a vector control function.

The fourteenth paper by H. Hermes of Martin Marietta
Company discusses "Controllability for Linear and Nonlinear
Systems." The idea of complete controllability for linear
control systems was first introduced and exploited by
R. E. Kalman, Y.C. Ho, and K. S. Narendra. In this paper
Dr. Hermes extends this concept to nonlinear systems with
the control appearing linearly. The first part of the
paper summarizes the work of the above authors. The second
part 1s concerned with the extension of the concept to
systems of the form

x(t) = g(t, (x» £)) + H(t, x(t)) u(t)

where g is an n-vector, H is an nxr matrix, and u is a

finite valued measurable control vector. An argument is

presented with regard to what should be meant by complete
controllability of the system stated above.

On the basis of the characteristics believed desirable
for this concept, a criterion is stated and it is shown to
satisfy the selected characteristics. How to extend the
concept to other nonlinear systems remains an open question.




The last paper of this progress report concerns low
thrust trajectories. It is written by D. P. Johnson and
L. W. Stumpf of Aeronutronic Division of Ford Motor Company.
The paper presents a complete second-order solution for the
case in which the thrust vector makes an arbitrary but
constant thrust angle with the radius vector. The solution
presented is constrained to leave a circular orbit. Further
work should be done to relax this condition and also on
selecting optimum thrusting angles.

Dr. Mary Payne of Republic Aviation reworked some of
the material presented in her paper, "Application of the
Two Fixed Center Problem to Lunar Trajectories." This
work 1s presented under item 17 in the Table of Contents.

It will be noted again that the editors of this report
do not correct any of the papers and the authors are
responsible for their papers in detail.
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Summary

Lo95/

This paper presents the development of an indirect method
for solving variational problems by means of an algorithm for
obtaining the solution to the associated nonlinear two-point
boundary value problem. The method departs from the usual in-
direct procedure of successively integrating the nonlinear equa-
tions and adjusting arbitrary initial conditions until the re-
maining boundary conditions are satisfied. Instead, an operator
is introduced which produces a sequence of sets of functions
which satisfy the boundary conditions but in general do not sat-
isfy the nonlinear system formed by the state equations and the
Euler-Lagrange equations. Under appropriate tonditions this se-
quence converges uniformly and rapidly (quadratically) to the
solution of the nonlinear boundary value problem.

The computational effectiveness of the algorithm is demon-
strated by three numerical examples. b uthe




INTRODUCTION

The mathematical theory used for the study of optimization
problems is the Calculus of Variations. Application of this
theory to meaningful models of physical situations generally re-
sults in a mathematical representation of the solution which re-
quires some numerical technique to effect solutions of use to
the engineer. Since the major computational device available
today is the high speed digital computer, e.g., the IBM 7094, an
a priori requirement for a numerical algorithm is that it be
systematically adaptable to high speed digital computation. For
the Calculus of Variations there are two general numerical ap-
proaches; the Direct Methods, and the Indirect Methods. The
direct methods proceed by solving a sequence of nonoptimal prob-
lems with the property that each successive set of solution -
functions yields an improved value for the functional being op-
timized. An example of such a procedure is the Method of Gradi-
ents which has been applied to a variety of problems with con-
siderable success. The indirect methods are concerned to find
by numerical means a set of functions which satisfy the neces-
sary conditions for an extremal, i.e., the Euler-Lagrange dif-
ferential equations. These necessary conditions and boundary
conditions form a nonlinear boundary value problem and it is
here that the numerical difficulty arises. The usual approach
to this problem is the systematic variation of arbitrarily cho-
sen initial conditions until the remaining boundary conditions
are met. This technique has proved largely unsuccessful owing
to increased dimensionality of the interesting problems and to
the sensitivity of boundary conditions to small changes in ini-
tial conditions. In lieu of this an algorithm has been devel-
oped which proceeds by solving a sequence of lineaxr boundary
value problems such that the sequence of solutions converges to
the solution of the nonlinear problem. Since the linear bound-
ary value problem is easily handled numerically the algorithm is
readily adaptable to high speed digital computation.

In what follows we shall discuss this approach in some de-
tail including a discussion of the numerical application. This
is followed by three numerical examples to illustrate the com-
putational effectiveness of the method.

11
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THE GENERALIZED NEWTON-RAPHSON OPERATOR

We are concerned with nonlinear operator equations of the

following form
BX = 0

where X 1is an element of an appropriate metric space S and B

is a nonlinear operator which maps S into itself.

For the case of the nonlinear two-point boundary value prob-
lems of interest herein the operator equation BX = 0 1is given
by the following system of nonlinear differential equations and
boundary conditions

f(-F(x,t)=0 , te[to,t]

£
x(l)(to) = xél) x(l)(tf) = xél)
N N N N
) G G. G
x 2 (ty) = x,° x 2t = %0

where

X = (x(l),...,x(N))

F = ('f(l),...,f(N);‘)

A Tt LL I (U R DR
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The metric space S 1is given by

S = ix(t): x(l)(t) is continuous on [to,th , 1 = 1,...,N} R
with the metric

N
p(x,x) = ¥ maxlxP () - xPwy| , x.x
t

i=1

We define an operator A on S by Xn+

1= AXn, n=20,l,...; X

arbitrary in S,

xn+1 = J(Xn,t) [xn+1 - xnl + F(Xn,t:)

N N N N
&) 3) G) <)
an (tg) = x02 xn2 (tg) = xf2

where J(X,t) 1is the Jacobian matrix of partial derivatives of
the £ with respect to the x93, i=1,...,v, j = 1,...,N.
Under appropriate conditioni the sequence an} converges

strongly to the solution X  of the operator equation BX = 0,

ale

i.e., lim p(Xn,XK) =0, where X 1is the solution of the
n -

nonlinear boundary value problem. The metric p implies uniform
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convergence for each of the component functions x(l)(t) of
X(t).

The operator A 1is called the Generalized Newton-Raphson
operator since it may be obtained from a direct generalization of
the Newton-Raphson sequence for finding roots of scalar equationms.

For the scalar case the operator equation BX = 0 becomes
f(x) = 0.
and the sequence defining A becomes
)
0=f (xn)[,xn+l - xn] + f(xn) , n=20,1,2,...
The appropriate metric-space S 1is the scalar field with the

L Axn, n=20,1,2,..., and X

is an approximate solution of f(x) = 0. As can be seen from the

usual metric. As before, x

scalar application the basic concept involved is geometric; a
curve is sequentially replaced by its tangent line, i.e., the
nonlinear problem is replaced by a sequence of linear problems.
Since there is a well developed structure for linear problems,
e.g., superposition for systems of linear differential equations,
the algorithm becomes computationally attractive. In addition,
since the linear two-point boundary value problem can be reduced
to repeated numerical integration of initial value problems, the
method is readily adapted to high speed automatic machine compu-

tation.

This algorithm was apparently first suggested for boundary
value problems by Hestenes (Ref. 1) who called it "Differential
Variations," and later further developed by Bellman and Kalaba

(Ref. 2) who refer to the technique as "Quasilinearization."
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Kalaba gives a convergence proof (Ref. 2), based on monotonicity
and convexity arguments, for the case of a single second order
differential equation with two-point boundary conditions. A con-
vergence proof for N dimensional systems was given by McGill
and Kenneth (Ref. 3). The latter proof proceeds by establishing
sufficient conditions for the operator A to be a contraction of
a complete metric space into itself. The desired results then
follow from the Contraction Mapping Principle (Ref. 4). The
method is also mentioned by Kelleay (Ref. 5) who remarks that com-

putational experience with the technique is lacking.

NUMERICAL APPLICATION

In this section we present a brief description of a numeri-
cal procedure for solving the linear system. This procedure,
with appropriate modifications, was used in obtaining the solu-

tions to the numerical examples included in this report.
At the n+1St stage of the iteration we have the linear

system

xn_'_1 = J(Xn,t) [Xn+l - xnl + F(Xn,t)

which is equivalent to

X

- COX® + D), e lege,]
X = (xl,...,xN)
X (tg) = % xp(tg) = x¢

!
~

(tg) = (k) =
N0 N, NE x-lzif

N
2 2 2
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D) .
RO NETE PR 3

(
Generate by numerical integration a set {X
X = C(t)X(t) with ini-

of solutions of the homogeneous system

tial conditions

&y

X (tg) = (0,0,...,0,x, =1,0,...,0)
Ny
2

(3+2)

X (t) = (0,0,...,0,x, = 1,0,...,0)
N
2

X(N)(to) = (0,0,...,0,...,0,1)

Generate a particular solution X(P)(t) of the nonhomogeneous
system X = c(t)X(t) + D(t) with initial conditions

(P
x )(to) = (xlo’xzoJ"',)Q-N-o’K'l’Kz’"':lsi) 3
2 2

. N .
where Ki’ i= 1,...,5, are arbitrary, e.g., K1 = K2==...= gﬂ=(l
2

They should, however, following a suggestion by Richard Bellman,
. . . , . N

be chosen to preserve numerical precision in solving the )

simultaneous linear equations given below. The solution X(t)

of the nonhomogeneous system with the prescribed boundary condi-

tions is then given by

N N
& A9y
X(t) = ey X 2 () +ey X 27 ey + ...+ch(N) @ +x® () ,
5+1 E+2
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where the % constants c , L =1, ...,g, are determined from

i

N J_z

the boundary conditions at ¢t = te by the solution of g simul-

taneous linear equationms.

For the purpose of conserving rapid access storage and also
as a check on the solution of the linear system the solution X(t)
was not obtained from the linear combination given above. Rather
it was calculated by once more integrating the nonhomogeneous
system X = C(t)X(t) + D(t) with initial conditions

nﬂg

X(to) = (x10’x20""’xN ey + Kl,c
50 2

E+l

+ K2""’°N + KN) .
2

The latter procedure requires the storage of only the final val-

()

ues of the vectors {X }, i= 1,...,%, and the final wvalue

of X(P), the particular solution.

ITAL, INTERCEPT EXAMPLE

The first example although not an optimization problem
serves to illustrate the application of the algorithm to a given

nonlinear boundary value problem.

The problem solved is that of determining the free fall path
which a space vehicle must follow in transferring from a speci-
fied position three hundred miles above the earth to another
specified position six hundred miles above the earth, with a
fixed transit time. The vehicle is assumed to be in coasting
flight and the perturbing effect of the moon is included. A
schematic diagram of the problem is .shown below where Xo(t) =

<x0(t),yb(t),zo(t)), the starting vector, is of the simplest
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possible form, namely, the straight line joining the two points

*
in space, X (t) 1is the solution vector.

The unit of length is taken to be the radius of the earth
and the principal gravitational constant is normalized to onme.

This results in a time unit of 805.46 seconds.

X(2) = (0., 0.576000, 0.997661)

\
A\
1y
i
!
!

Xy (£) —7 Lx*(t)

f y

X(0) = (1.076000, 0., 0.)

Schematic Diagram

The sixth order nonlinear system and two point boundary con-
ditions which furnish the mathematical description of the problem

are given by
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~
Hw‘“

+
=4
N
b
ol

™M

y v ° Y ¥y
y=-K'3+KM<M3 -3 3 t « {0,2]

r o} rM’

N
]
N

N

- - w2 M _
z==-K=5+ KM< 3 3
T 3 r
M
x(0) = 1.076000 x(2) = 0.
y(0) = 0. y(2) = 0.576000
z(0) = 0. z(2) = 0.997661

Nfr

r = [x2 + y2 + zz]

[

2

2. 2. 2
ry = byt vyt 2yl

[V

o =[G - 07+ Gy - NP+ gy - 27

For simplicity the lunar coordinates, Xy Yy 2y are assumed

constant.

The time interval (0,2] was divided into 100 parts and the
necessary numerical integrations carried out by means of a high
speed digital computer (IBM 7094) to an accuracy of seven signifi-
cant figures. The results are exhibited in Table 1 where for

brevity only six points in time are shown. XO (t) 1is the linear
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starting function; Xl(t) is the first mapping; Xz(t) is the
* X .
second mapping, etc.; and X (t) results from the integration of

the actual nonlinear equations with the initial velocities,

%(0) = 0.101637
y(0) = 0.472285
%(0) = 0.818022 ,

obtained from the final iterate.

The sequence [Xn] converged, within the accuracy of our

computations, in three iterations with:

p(Xl,Xo) = 0.480116

p(X,,X;) = 0.133753

p(X5,X,) = 0.004375
p(X,,X3) = 0.000004 ,

where

(oK) = Pl (€)= 3 (O] + maxly ) (©) - 5, (0)

+ maxlzn+l(t) - zn(t)l .
t

As a further check on the over=~all accuracy the perturbing
force was set to zero and the final value of the magnitude of the
initial velocity was compared with that obtained by the closed
form solution for the two-body problem. Within the accuracy of

our computations these values were identical.
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We note that we have simply and rapidly produced the numeri-
cal solution to a simple orbit determination problem, viz., given
the position of a body at two distinct times, determine the time
varying orbital elements of the body in the presence of perturb-
ing forces. Solutions have also been produced even when the two
points are exactly 180 degrees apart. In this case the straight
line could not be used as a starting function since it is singu-
lar. However, a simple triangular path was sufficient to produce

the characteristic rapid convergence.

LUNAR DESCENT EXAMPLE — MAXIMUM RANGE

A very simple variational problem was chosen for the second
numerical example. This problem concerns the maximization of the
translational range of a lunar vehicle during descent to rest
from a hovering condition 1000 ft above the lunar surface. The

time for the maneuver was fixed at 2.062 minutes.

For the purpose of generating this numerical example the

following simplifying assumptions were made:

Constant thrust acceleration
Uniform gravitational field

Analysis restricted to two dimensions.

The problem then is reduced to finding the thrust steering angle
time history which produces the maximum range in the given fixed

time.

The mathematical description of the problem is furnished by
the following Euler-Lagrange differential equations and boundary

conditions
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u =T
r =T
y =V
A = -
u
A = -
v
A =0
y
u(to) = u,
v(to) = vy
y(ty) = ¥y

y(tg)

]

f(l) ; te[to,tf]

£

(3
£(4)
£(5)

£(6)

M

The unit of length was chosen equal to the initial altitude

of 1000 ft and the local gravitational constant and vehicle mass

were put equal

data for the pr

to one. This resulted in the following normalized

oblem:
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uy = 0.000 ue = 0.000 Xy = 0.000
vg = 0.000 v = 0.000
yg = 1.000 yg = 0.000
T = 5.000 £, = 0.000
gy = 1.000 te = 9.000

This normalization resulted in a time unit of 13.70 seconds. A

crude starting function Xo(t) was chosen as follows:

uo(t) =0
vo(t) =0

Ye © Y
Yolt) =y, + t‘i‘?;% t
?\YO(t) )
Auo(t) =c -t
Avo(t) =c,-cyt,

where the three constants C1» €5 and 4 correspond to an ar-
bitrary estimate that the steering angle, measured from the local
horizontal, should be initially zero, equal to w/2 at

f
t == and slightly less than 7 at t = tf.
The sequence [Xn} for this case converged uniformly to an

accuracy of 5 significant figures in six iterations. The total
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computer time (IBM 7094) required for this problem was 18 seconds.

The desired final value of the range Xe = 100, 200 ft was ob-
tained from
e
%
Xe = u (t)dt ,
%o

where u*(t) results from the integration of the nonlinear state
and Euler-Lagrange equations with a complete set of initial val-
ues taken from the final iterate. This final integration of the
nonlinear equations also served as an over-all check on the solu-

tion.

LOW THRUST ORBITAL TRANSFER EXAMPLE — MINIMUM TIME

The third and final example concerns the problem of minimiz-
ing the transfer time of a low thrust ion rocket between the or-
bits of Earth and Mars. This problem involves additional compli-
cations over the previous problems, the most significant of which
is the fact that the final value of the independent variable is

no longer fixed.

To simplify the problem as much as possible the rocket's
thrust level was assumed constant, and thus the single control
variable is the thrust direction. Further, the orbits of Earth
and Mars were assumed to be circular and coplanar, and the gravi-
tational attractions of the two planets on the vehicle were neg-
lected. The following system parameters for the low-thrust vehi-

cle were adopted from Ref. 5:
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Initial Mass, my 46 .58 slugs

Specific Impulse 4700 sec

Propellant Consumption Rate, m, -6.937 x lO-7 slugs/sec
Thrust, T, 0.127 1b
Thrust/Initial Weight 0.9 x 1074

The equations of motion are given by:

Radial Velocity

r = f(l) = u

Radial Acceleration

2

- (2 _ v _ k , T sine
u=£ T or r2 + my + mt

Circumferential Acceleration

- (3 _ _u, I coss
v=_{ - r +-nb + mt

where u and v are the radial and circumferential velocities
respectively; r 1is the radius; and 6 is the thrust direction
angle measured from the local horizontal. All the initial and
final values of the state variables were specified, and the quan-
tity to be minimized was e the final time. Since the method
as previously outlined required a fixed final time, the procedure
was altered to suit the minimum time problem. What follows is a
brief description of the modified procedure and a discussion of

the numerical results.
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The two point boundary value problem resulting from the

Euler-Lagrange equations is given by

r =u = f(l)
2 A
@ =% - Eaiae u @
T '}\2 + )\2)2
(a7
A 3
\'/=-u;‘£+a(t)-;—v—;—% =f)
(xu + Av-)
)\__Z-zi - BV __.f("')
b C:Z 3 2 v .
A =-A +3¥ = £03)
u r T Vv
A =-2¥ ) 4, - £(®)
v r ' u r V
where
T
a(t) = -~ ,
mo 4+ mt
and the boundary conditions are
t =0 t = tg (unspecified)
r(0) = r, r(tf) = r¢
u(0) = Ug u(tf) = ug
v() = Vo v(tf) = Ve
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This may be written as

)‘( = F(X,t)
where
X ='(x(1),...,x(6))
F= D, .., 0
and

Py =cwy ., xPw=uww ., =P -vw
Doy =nw o Po-rno , Po-rm.

The method proceeds as before by solving the following sequence

of linear two point problems

xn_'_1 = J(Xn,t) [xn_’_1 - xn] + F(Xn,t n=0,1,... ,
where J(X,t) is the Jacobian matrix of partial derivatives of
the f(l) with respect to the x(J), i=1,...,6, j=1,...,6.

A starting vector, Xo(t) and an estimated final time, te s
0
are assumed and the sequence of linear boundary value problems is

solved numerically by the procedure outlined previously, with the

following boundary values:
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t=20 t= tfk
x1 ) =z @ =z,
xéz)(O) = un(O) = u, xéz)(tf) = ug(tf) = ug
xéB)(O) = vn(O) = v xéB)(tf) = vn(tf) = Vg
4
@) = n_ (0 =1
n
n=1,2,...

Setting %r(O) = 1 accomplished the scaling of the multipliers.
The iteration proceeds until E(xn+1,xh) < B where

6
= - @) . @
P %) = Z max lxn+l *n |
.~ te[0,t. ]
i=1 fk
At this stage the final time, te is adjusted automatically
k

according to the difference [rf - r(tf )] by a scalar applica-
k

tion of the Newton-Raphson procedure as follows

(tfk " TEy 1)
t =t + ———(r_ -~ r(t. )]
f r(t, ) - r(t ) f f
I+l k £, £,1 k

The above iteration on Xn now continues for the new final time

te until E is again < B. The over-all process proceeds

k+1
until p < € where
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and b 1is a scaling factor. The corresponding iterate Xn+l is
accepted as the solution to the minimum time problem, and a final
check is run by integrating the nonlinear Euler-Lagrange equa-
tions with a complete set of initial conditions taken from the

final iterate.

For the purpose of numerical precision the data for the

sample problem were normalized to obtain

r, = 1.000 Ve = .8098
re = 1.525 ue = 0.000
k = 1.000 = 1.000
Vo = 1.000 m = - .07487
uy = 0.000 T = . 1405

This resulted in a time unit of 58.18 days. The starting vector

Xo(t) was chosen rather crudely as follows:

te = 178.0 days, or 3.060 of our time units
0
r. - r
1 f 0
xé )(t) = ro(t) =1, + -—?;;——- t
0
(2) - -
X5 (£) = uo(t) =0
1
(3 - - —k ~N°
g (€)= vp(e) = <r0(t)>
(4) - =
X, (t) = Aro(t) = 1.000
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.5200 for tel[0, % tg |
0

1 (6) = A, (®)
Yo
-.5000 for te(3 tfo, tfo]

.3000 for te[0, 3 te ]

(6) -
xo (t) - }‘vo (t) 1

1]}
—
o
e

0.000 for te(3 te » tg ]

The final two starting functions Au (t) and Av (t) correspond
0 0

to a control angle Go(t) which is constant at 60° above the
local horizontal for the first half of the transit time, and con-
stant inward along the local vertical for the remaining half of

the transit time (see Fig. 1).

The sequence [Xn} converged uniformly to an accuracy of 5
significant figures with 4 shifts of the final time in 13 total
iterations. The resultant minimum time was found to be 193.2
days; in agreement with results previously obtained by gradient
methods (Ref. 5). The total computer time (IBM 7094) required
was 36 seconds. Figure 1 illustrates the behavior of the control
angle program, where eo(t) is the starting function, Gl(t)
throug: 94(t) correspond to the 4 shifts of the final time tes
and 6 (t) results from the integration of the nonlinear state
and Euler-Lagrange equations with the initial values taken from
the final iterate. The curves for Asz(t), 93(t), and 94(t)
lie, within our plotting accuracy, on the solution curve 9*(t);
except for the final segments as indicated on the figure. The

behavior of the metric p is shown in Fig. 2.
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We observe that for this particular example the approach
just described is systematic, simple to apply, and yields rapid

convergence from crude a priori starting functions.

By simple changes in the initial data, solutions were also
generated for Earth to Venus and Earth to Jupiter transfers. The
minimum times for these were 139.2 days and 478.2 days respec-

tively.

CONCLUSIONS

The numerical examples of this paper suggest that the Newton-
Raphson operator technique may be a useful computational method
for obtaining solutions to meaningful nonlinear boundary value
problems; and in particular for obtaining extremals for varia-
tional problems. It may be of particular use in generating fami-
lies of solutions for given variational problems with differing
values for the relevant parameters; for in this case the solution
for one set of parameters becomes the starting funtion for the
succeeding problem. This implies that the desired family may be

generated with reasonable computation time.

We note, however, certain reservations. Although it was
possible, for the included examples, to obtain crude a priori
starting functions sufficient to produce convergence, it is not
clear that this will remain true for other more complex problems.
If it should occur that starting functions sufficient for con-
vergence are not easily obtainable then one might consider a
hybrid approach, e.g., using a few steps of a gradient technique

to produce the necessary starting functions.
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It should also be noted that the solutions obtained by this
method are simply extremals and are not necessarily solutions of
the given maximization or minimization problem. In general,
further information must be brought to bear to decide whether or
not one has in fact produced a solution to the optimization prob-
lem. This may be in the form of physical reasoning based upon
properties of the particular system, or in the form of additional
mathematical tests, e.g., the Legendre-Clebsch condition, the

Weierstrass test, etc.

Finally, we observe that application of this algorithm to
problems with bounded control variables and/or state variable
constraints requires further modification and extension of the
technique. A problem of bounded control is presently under study

and will be reported upon at a later date.
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TABLE 1
t

X 0. 0.4 0.3 1.2 1.6 2.0

X 1.076000 | 0.860800 | 0.645600 |0.430400 {0.215200 { O.

Xy 1.076000 | 1.015153 | 0.845061 [0.610986 [0.323847 | 0.

X, 1.076000 | 1.048799 [ 0.900816 |0.657001 |{0.346085 | 0.

X4 1.076000 | 1.049839 | 0.902586 |0.658550 |0.346867 | 0.

X, 1.076000 | 1.049840 | 0.902587 | 0.658551 |0.346868 | 0.

x* | 1.076000 | 1.049840 | 0.902587 | 0.658551 |0.346868 | O.

Yo 0. 0.115200 | 0.230400 | 0.345600 |0.460800 | 0.576000
Y1 0. 0.172927 | 0.324202 | 0.447591 (0.537713 | 0.576000
Yo 0. 0.184664 | 0.348339 | 0.475158 | 0.553667 | 0.576000
Y3 0. 0.185100 | 0.349180 | 0.476056 | 0.554172 | 0.576000
Y, 0. 0.185100 | 0.349180 0.476057 0.554173 | 0.576000
y* | C. 0.185100 | 0.349180 | 0.476057 | 0.554173 | 0.576000
zg 0. 0.199532 | 0.399064 | 0.598597 [0.798129 | 0.997661
zy 0. 0.299519 | 0.561534 | 0.775250 | 0.931347 | 0.997661
z, 0. 0.319848 | 0.603341 | 0.822998 | 0.958980 | 0.997661
z4 0. 0.320602 | 0.604800 | 0.824553 | 0.959854 | 0.997661
z, 0. 0.320603 | 0.604798 | 0.824555 | 0.959855 | 0.997661
z*¥ | 0. 0.320603 | 0.604798 | 0.824555 | 0.959855 | 0.997661

0. 0.4 0.8 1.2 1.6 2.0
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Fig. 2 E, p Versus n for the Newton-Raphson Method
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12093 %* SUMMARY p\

The Maximum Principle of Pontryagin is used to find the point-to-
point re-entry trajectory of a space vehicle with an offset center of
gravity which will minimize the accumulated aerodynamic acceleration.
The mathematical model used incorporates the yaw angle of attack as
the control variable and eliminates undesirable oscillations due to
time variations of the rotation state variables. The set of charac-
teristic differential equations is written with the first order
equations of motion as constraints. A computation procedure is
devised so that numerical solutions can be obtained on a digital

A Parn—
computer. /?
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= "?r Roll forces in the missile system

2



40

0

(a)

w1 & &

<t
<1I'1lm<:l ot

=l

Aerodynamic moment (missile system)

Roll mcment (missile system)
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I. INTRODUCTICN

In "Progress Report No. L On Studies in the Fields of Space Flight
and Guidance Theory" a paper entitled "Preliminary Investigation on
Six Dimensional Optimum Re-entry Trajectories" is presented by Douglas
Raney and W. A. Shaw. The following paper is a continuation of that
study.

In this paper the optimum re-entry problem is studied as in
Progress Report No. L with the following exceptions:

(1) The yaw angle of attack is taken to be the single control

variable,

(2) Undesirable oscillations due to time variations of the

rotational state variables are eliminated.

(3) The Maximum Principle of Pontryagin is used rather than

the classical czlculus of variations.
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II. STATEMENT OF THE PROBLEM

The problem herein presented is that of determining from a given
class of allowable trajectories the best one yielding mission fulfill-
ment.

A space vehicle is assumed to initiate a re-entry into the earth's
atmosphere from some initial point above the earth's surface. The
influencing forces are the gravitational force of the earth and the
aerodynamic force created by atmospheric drag. The prediction of the

| vehicle's performance is based on the assumption that a conirol system
is desired which will satisfy the following criteria: |
1., Minimization of the accumulated g-forces on the
vehicle's occupants.,

2. Capability of making a point landing.

In mathematical form the first of these becomes the minimization
of the integral of the square of the total aerodynamic acceleration.
The second can be accomplished by the proper choice of the initial
auxiliary variables, ;

The performance problem thus i‘ormulatea becomes the fixed end
point problem of Lagrange, where the integral to be minimized has as
constraints the first order equations of motion of the vehicle. The
boundary conditions are the initial and terminal values of position,
velocity, and roll angle. The magnitude of the yaw angle of attack

is taken as the control-variable,
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Additional assumptions made are as follows:

1. The earth is a rotating sphere and the inverse
gravity law holds,

2. The mass of the vehicle is invariant with respect
to time,

3+ The vehicle has an offset center of gravity which
is invariant with respect to the vehicle.

L. A pure couple is produced about the roll axis of
the vehicle by properly placed jets whose force
magnitudes are functions of the control variable,

S. The angular velocity and the angular acceleration
of the pitch and yaw angles are zero and the
acceleration of the roll angle is zero.

6. The center of pressure is invariant with respect

to the center of gravity.



III. COORDINATE SYSTEMS

Three rectangular cartesian coordinate systems will be used in
this paper. They are:

1, The plumbline space fixed coordinate system

2. The vehicle fixed missile system

3. The aerodyriamic system.
A. PLUMBLINE SYSTEM

The plumbline system, Figure 1, has its origin at the earth's
center with the Y axis parallel to the gravity gradieat at the launch
point. The X axis is parallel to the earth fixed launch azimuth and

the Z axis is such as to form a right-handed system,
B. MISSILE SYSTEM

The missile system, Figure 1, is defined with its origin at the
center of gravity of the vehicle and its yp axis parallel to the
longitudinal axis of the vehicle. The x; and 2, axes are taken so
as to form a right-handed system which is parallel to the plumbline
system at the launch point.

As the vehicle moves along its trajectory, the missile system
undergoes a displacement with respect to the plumbline system. 1In
flight the two coordinate systems are related through Eulerian angles
which are measured by a gimbal, The direction of the vehicle in
flight is defined by first rotating about the Z axis by g[)p, then

around the new intermediate x axis by qS v and finally around the




FIGURE 1,

PLUMBLINE AND MISSILE COORDINATE SYSTEMS
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¥ axis by -(Pr. Thus, a position vector in the missile system may

be written in terms of the position vector in the plumbline system as

- T - -

= [#o]s [#e]s T ®
or xm'l- CR 0 SE 0o oT\[cp sP O7)[X

Yn 0 1

0 0O CY SsYyj{-sp CP O Y (1a)

sz SR 0 CR 0 -5Y CY o) 0] 1l 2| .
-

Expanding the above gives

X, = | CRCP + SRSYSP | CRSP - SRSYCP ; SRCY

';
[}
-CYSP % CYCP E SY [X = [AD] X, ()
-SRCP + CRSYSP E -SPSR - CRCPSY i CRCY

where [_AD] is the transformation matrix and CR, for example, is used
to denote cosine qS re The gimbal angles are illustrated in Figure 2
where a right hand rotation is positive. The above definitions of
Eulerian angles are consistent with those used in computer decks compiled
by NASA.(h)

AERODYNAMIC SYSTEM

The aerodynamic system is defined with its origin at the center of
pressure of the vehicle and its y, axis coincident with the relative
velocity vector. The X, and z, axes are chosen to form a right hand
system.

Again, as the vehicle moves in flight, there will be a displace-
ment of the missile and aerodynamic coordinate systems relative to one
another. The direction of the relative velocity vector or the y, axis

may be defined by the following rotations:
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1.

2.

or

Rotate the vehicle fixed reference frame about the Y
axis such that the Xn axis is brought to lie in the
plare which contains the y, axis and the relative

velocity vector. Denote this angle as a v

Rotate about the new z axis to bring the y, axis
coincident with the relative velocity vector. Denote
this angle as (L . This angle is the so-called true

angle of attack.

A position vector may now be written in the aeroaynamic system

in terms of the missile system as

ool [ag) e ®m (2)

ca sa o] fea, o sa,|[x

y

s ¢ o 0 1 0 Ym | o (2a)

0 o 1 sy © CQy| | 2n
] [}

ca cays-sa,:l-cct. sQ

caysa ! ca -sa sa, % [ta] Ta - @)
' !

qu ! 0 ;CCLy

Figure 3 illustrates this system.




49

Yon

MISSILE AND AERODYNAMIC
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IV, BASIC MECHANICS

A. FORCES

Gravitational force. Since a spherical earth was assumed, Newton's

Law of Universal Gravitation which gives us an attractive force between
the earth and the vehicle is

Fy= - ook | (3)
[rI3

Aerodynamic force. The aerodynamic force, Figure L, is a force

due to atmospheric drag. It acts through the center of pressure and
the direction of the force is always parallel and opposite to the
relative velocity vector. Written in the aerodynamic system the force

tzkes the following form:

. (L)

In the missile system

Fam = [%] Fa (5)
or
Fom= | Fax | = F, SQ ca ¢
Fany F, c°Q . (5a)
Foanz | Fa 5Q sQ 5

The expression for the magnitude of F, is taken to be the same as
that proposed by Miner(h) » i.e., F, = Aqf (). A is the projected
cross-section area of the vehicle, q the dynamic pressure, and f (a)

a factor which is determined by the vehicle'!s configuration.
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FIGURE L. AERODYNAMIC FORCE SYSTEM
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Since the aerodynamic force is dependent upon the relative
velocity or the flow or air over the missile, it is appropriate
at this time to discuss this flow. Miner's proposals are again
used where he acsumes that the atmosphére in the large moves with
the earth., This gives at all times an air mass movement with respect
to the plumbline system of

X x@0; - W,

whers W is used to represent any abnormal air movement desired. The

relative velocity vector in the plumbline system is then given by

VR = X ['f x@ 5 - W:l , (6)
or ,
- 9 v - - - -
VRX X (,()EX WX
Vey | = | +y| x Wegy | - Wy . (6a)
e |12 2] =] R

In the missile system the relative velocity may be written as

vr’m = [AD] VR = - vrmx

Vrmz

or in terms of the aerodynamic system -\-rariables

- T =
Vem = E.a] V.o, (8)
where
Vx = |0
Vr .
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B. MOMENTS

Aerodynamic moment. Since both the center of pressure and the

center of gravity are invariant with respect to the vehicle, a cone~

stant vector in the missile system may be used to relate the two.

Let §; be the missile fixed coordinates of the center of pressure

P
with respect to the center of gravity. The aerodynamic moment about

the center of gravity is then given by

Ma:n = xcp X -F-‘aﬂl » (9)
or
- 9 -
Ma | [YopFa 8@ SQ § + 2, F, cQ
Mamy | =|%cp Fa SQ 5Q § - Zo, F, SQ cQ 4. (52)
| Mang Xp Fo CQ + y, F, sQcQ,

Roll moment. Reference to Figure 5 will show the system of roll
Jets which is used to fulfill assumption L of the problem statement.

The jets are placed so that in the missile system

Fr 0
?rl = |0 » located at 3z =|o ,
o | 2r
'Frj TO 7
and §r2 = 10 s located at :Er = |0 .
L~ "r |
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FIGURE 5.

ROLL FORCE SYSTEM
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The moment about the center of gravity caused by these forces is thus

given by
R, = 2 [Er x ?-"1] , (20)
since .frl ® - FI‘2 s
or Mem = 0
. 2z, . (10a)
0

The total moment about the center of gravity, in the missile system,

is then the sum of the aerodynamic and roll moments.

HTm = ﬁam"" ﬁm K4 (11)
or
Vop Fa SQSQ, + 2, F, CC
Mp = |-xp F, sQsQ, - Zep Fa SQACQA +2F 2. | . (11a)

m
Xep Fo CQ+ yop Fy SQ ca o
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V. EQUATIONS OF MOTION

From Chasle's theorem of mechanics, it is possible to interpret
the equations of motion of a rigid body as the sum of two independent
effects. One, the motion of the center of gravity with respect to the
inertial coordinate system and two, the motion of the rigid body around
its center of gravity. In general, this type of rigid body motion in
three-dimensional space requires six degrees of freedom since six state
variables are needed to fix the orientation of the body with respect to
the inertial frame. The state variables used in this problem are the

plumbline coordinates and the Eulerian angles.
A. TRANSLATION MOTION

As previously stated, only gravitational and aerodynamic forces
are considered. Using Newton's Second Law, the translational motion
of the center of gravity with respect to the plumbline system is given

by the following set of second order differential equations.

¥ = -0 + [T Fp & (12)
IRI m
where
.YQ
OZ.

By making the following change of variable, the second order equations

of translationzl motion may be reduced to first order.
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T = Jul=z |X]| = X
W Z
The first order translational equations thus become
T o= -0% o+ [ap]T Fo . (14)
lRl3 m
For convenience, the following definitions are made:
g = - _ , (15)
IrI3
T F =F, ¥ = F' ¥ 16
[f_D_]_ an = Fa ¥ = a ’ (26)
m m
where

N o Ni= ~(CRCP + SRSPSY)(SCLCCLy) + CYSPCCL+(-SRCP + CRSYSP)(SCJ,SC’.Y)
P ~(CRSP - SYCPSR)(SCLCCLy) - CYCPCQL-(SPSR + CRCPSY)(SG.SCLy) . (17)
Q t(sncx) (saecty) - sxca+(CRCY)(sasay)

Thus, the translational equations may te written as

W - FN+gX. (18)
B. ROTATIONAL MOTION

In writing the rotational equations of motion the energy method
or the Lagrangian form was found to be more convenient than the
Newtonian approach., For generalized coordinates of angular character,

such as the Eulerian set, the Lagrangian form becomes
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d OT\- oT = Mﬁbi s (19)
dt &?'1 d¢i
i . Py ¥, 7

where M qs i is the moment associated with the sb 5 rotation and 1 is
the kinetic energy. Since an offset center of gravity was assumed, all
components of the inertia matrix are taken to be non-zero. The kinetic

energy for such a system is given by
- T —_
T- ya'[u]a , (20)

where [ ].L] is the inertia matrix

[FL .-J - i Ixx 'Ixy 'Ixz1
"I'xy I‘yy 'Hz ’ (21)

“Ixz V2 z2

and (0 is the angular velocity vector of the vehicle written in the
missile fixed system. Using the expression above for the kinetic energy,

the Lagrangian equation takes the following forms

o (2E]H 0 - 221 52 - 221 @rxdu

i

The &) , vector is obtained by transforming the angular velocity com-
onents ' and into the missil stem from their

P Sb P’ CP v’ ﬁb r e 8y

positions in the directions of the axes of rotation. Since the gimbal
system used in this analysis measures pitch, yaw, and roll in that order,

turning from the space fixed plumbline system, the following transforma-

tions must be made, gb r is already in the missile system; 4> y
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must be rotated through CP o and q) p must be rotated through qb ¥

and then qs e In the missile system, the (0 vector thus becomes

o) CR O SR qSy'] cR 0 SR|[2 o oo
CD'C}Br* o1 offo |+| o1 ofllo cx st|lo | (23)
0 SR 0 crl| o0 -snocno-srqus

or SRCY CR 0 gép
@ =.|sY 0 -l CP y = I:Aa)] 95 . (23a)

CRCY -SR 0 ¢r

C kT

Using these express1ons in the rotational equations and rewriting in

Also

vector form, the Lagrange equations in pitch, yaw, and roll become:

- [¢] { ﬁb [s]q; [T]cﬁ +B} ) (2k)
where B, =§5 &gcpi [},L][ijqﬁ s

and .Bp ‘ . q:b. D qﬁ.p

qu-[Aw]T Mo s
1 -{D ][u][]} :
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[s] - d[gﬂT ] [ag) s &

' T
(1] = () " (o] afaw] - .
dt
Now in order to comply with assumption five of the problem statement,

the following definitions will be used throughout the remainder of

this paper.

v e O

B-i.
|

qg - lol=0 (25)
0 qbr'
The first order rotational equations thus become
- [ ) -1 kS - -
SR O I OF IR

where it is shown in appendix one that [.C ] is a non-zero matrix.

(26)
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VI, FORMULATION OF THE VARIATIONAL PROBLEM

Before going into the mechanics of the variaticnal problem, further
consideration must be given to the equations defining relative velocity
and to the constraint equations. These equations must be solved for a
particular set of variables so that a computational procedure can be
deviscd,

First to be considered will be the equations defining relative
velocity. Written in two different sets of variables, the relative

veloéity in the missile system takes the form

= - T -
The components of this vector yield the three equations (28) through

(30):

(CRCP + SRSYSP) Vpy + (CRSP - SRSYCP) Vgpy + SRCY Vgz = V. SQ ¢Q y (28
-CYS? Vpy + CYCP Vpy + SY Vpy = V. CQL | (29)
(-SRCP + CRSYSP) Vpy = (SRSP + CRCPSY) Vpy + CRCY Vpg = V. SQ SQ g+ (30)

Tais set of equations is not an independent set and thus cannot be solved
for thres unknowns., A clue as to the dependency may be gotten by realizing
that the three equations are components of a vector and that only two angles
are necessary for locating a vector in three space. In order to solve the
problem, as stated in this analysis, the relative velocity equations are

used to obtain the two variables q5 p and qb v



From a combination of equations (28) and (30), the expression for

qbp is found,.

2 2
SP = J Vgy --\/12 ey - (vEx vamg)(J2 -Vax ) (31)
2 2
and
P = I Vgy +\/I2 Vg - (VB + VAP - VR ) (32)
2 2
where J = CR Vp -SRV.. . (33)

s P = ABHAN(%)

The solution thus obtained is not unique from a purely mathematical view;

< cj:p ST, (34)

-

however, if physical considerations which lead to consistency in the
problem are granted, then the solution is unique. (See Appendix II).

Equation (29) is solved for Qb v

2

SY = Vo Ve -0\ Vny Vaz - (Vag + K9)(Vagy - K0) (35)
(Vag + K?)
and
Y = Vo K+ ‘\/v?_wly K2 - (V3 + 1(2)(\713,my - vﬁz) , (36)
(V2 + K°)
where
K = CP Vgy - SP Vpy. (37)

Thus the expression for qb y is

(4

SY ’
' = ARCTAN | 5% ) - < <.
?y_ <cy> qSy (38)
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Again, as in solving for ¢p » the uniqueness of the solution comes
from physical considerations. (See Appendix III.)

The components of the vector equation for rotational motion are
now written and they are solved for the variables Fr, gb £ and O .
The choice of variables to be solved for is again made with the compu-

tational procedure in mind. From the vector equation (27) the components

take the following form:

. 2
T, Pr = ¥pF, 5Q s5Q y *%p Fa CQ (39)
0=x,F, SQA SA _-2,F, SACA ,+2F, 3, (Lo)
*2
I}.’Y¢r = -chFa ca + ycp Fa S cQ y . (hl)

Solving the three independent equations for three unknowns yields
CL = ARC TAN I}.,zxcp - Ly 2ep

’ (L2)
Yep (Iyz CCLy+Ixy. S(Iy)
F.= F, sQ (xcp SCLy * 25 CCLy) , (L3)
22r
and
q~br " [Fa U 5Q0CQA y-x, cQ ) (L)
Ixy

Equations (3h4), (38), (L2), (L3), and (4L) are thus the equations which,
along with the characteristic equations, form the problem solution.

As expressed in the problem statement, it is desired to determine
from a given class of allowable trajectories the best one yielding mission
fulfillment., This is accomplished by finding among all admissible con--

trols y('l’.) which transfer the vehicle from i‘o to ZI‘ one for which the



o4

functional:

D =/:T [DRAG]z at (LS)

o

takes on a minimum value., In this analysis the word drag will be used

synonymously with aerodynamic acceleration. Thus from Equation (18),

2 - - 1.2 w. == 4.2
[DRAGJ =F, N « F, ¥ = (F)°N+N=(F), (L6)
and
% 1.2 ¢ 1.2
b= [T ) e s D= ) . A
s
The Pontryagin H function may now be written as follows:
H = XI'X*'KII'11+ X7 ¢ r+x8 D , (L48)
where

—

Xy Ay
X1 <[\ D >\5 .
s | Ag

L. -

The A (t), 1 =1 ...8, are the auxiliary variables that are
incorporated in the same manner as the Lagrange multipliers in the
clessical calculus of variations, Substituting into H from Equations

(18), (LL), and (L7) results in the following:

Hsj\l.f-r—xn.[F;ﬁ'*-gf]

XV [l 5QCAy - xp c@eNgEDA @)
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The expressions for the auxiliary variables are obtained from the H

function and take the following form:

'
>t
=]

[
Q.
for]
o
vy
'
QU
>
(=]
)
[ ]
=
N
+
~~
>/
=
H
[
=
g
o
j
[

o

<l
(e
<
VY,
b€l

I+
ke
.Sq

w

Q

o

Q
~
e ]

o

Q
Q/
5

Iey oX
+ Ry __OF)’ (50)
' ox
S __ = - (R *® +(Xp+F 3Fa
- H +F o hut
Amtgd A 3% %
1
* )\7 Jep SQ CCLy - X CQ S(F,)*2
Ly 93
1,2
© Xg am)? (51)
u
A U TR T b Y (52)
7 a II
3 » Q¢ .
- )\8= QH = 0 (53)

3D
It is implied from equation (53) that A\ g @ constant. The equation to
be solved for the control variable and a necessary condition for a

minimum of D are given below.
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°Qy oy
* Ay vV Fa o Vop @ QA -x ca =0 (5b)
°oa, T
Xy

For a minimum of D,
L]

2 . 3%
Q° H = F 11 P ,

da? da
y y

2
z )\.7\/ Fa -—a——z- Yep SCLCG.y-xcp ca > 0 (55)
éa.y Iy

As shown above in the Pontryagin formulation, )\ 8 = constant. This
constant will be chosen as )\ g - +1 in order that a minimization of

the H function will also be a minimization of D, i.e., 62 H > 0
da’®
for 2 minimun D. v
Equations (3k4), (38), and (42) - (LL), are the constraint and defi-
nition equations which must be satisfied, and equations (50) through (5L)
are the characieristic equations. The complete set of algebraic and
differential equations needed for the problem solution have thus been
found., The desired minimum drag re-entry path will thus be one which
satisfies all the aforementioned equations, A closed form solution to
this set of equations does not seem probable nor is the time spent in
searching for such a solution justifiable since numerical solutions via

digital computers can be achieved to almost any degree of accuracy.
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VII, COMPUTATIONAL SCHEME

Before the corputational procedure is written, it is found conven-
ient to rewrite important equations in functional form. Reference to

these equations will be made throughout the computational scheme.

a-al(a (56)
F, o= F, (T, i‘,a,ay') (57)
P o= r(i,i,a,ay) (58)
q:p .gbp(z,x,cpr,a,ay) (59)
qsy '¢y(iai:¢p:a’) (60)
¥ = % (i,x,qb,a,ay) (61)
B (LY, 0,26, X) (62)
-.>-\ '—i (i:i:ﬁ: X:a,ay) (63)
QH = OF (L4, a,a ,d, A ) =o (6L)
Q. éay

Starting values

¢ - A
n oo,
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_ - - r~
XO = XO-‘ Zro = 0
Y, 0
Lzo_ | Zro
- = ] N
X = | % N0 ® )\10
¥ A
o 20
__iO_ L.>\3Q.
— ~ T K
*Xep = | *ep A 110° >\hoj
Jep XSO
z A
i co_ | 760 |

Atmospheric tables for p as a function of altitude.

Atnospheric tables for W as a function of position.

Aerodynamic tables for f( () as a function of QU .

Preload Computation I

1. Choose O gyl = =TT

2. Compute the following, in order, using the positive sign in equation

(58), the O y1 from step 1, and starting values.

a £ rom equation (56)
7, from equation (57)
Cl.b ¢ from equation (58)
qs . from equation (59)
qs y from equation (60)
3{: from equation (61)
H from equation (62)
S H from equation (6L)

Gy




3.

L.
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Choose (1 y - Cl,yl + 5% and repeat step 2 using Q y2s
Qy3 =Qyp+ 5° and repeat step 2 using y35 etce, up
to Q y= T .

Repeat steps 1 - 3 using the negative sign in equation (58)

rather than the positive sign.
The print out from preload I should be tabulated as follows:

O H S H

BN, S58+{Qy | H Q4 EQN. 58-| @ H oy

Plots of H versus @ and O H versus y should give some

insight as to whether more than one solution exists to this problem.

Preload Computation II

So

Using starting values and thae positive sign in equation (58),
iterate equation (64) for Q v The results of preload I will

aid in choosing the starting point for the iteration.

2
Compute QH » equation (55), using starting values and the
T Np7 2

oa
y

c y from step 5.
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Te

9.

10.

12.

IINII

13.

Check for 9 2H > 0 . If the inequality holds, then a
aa}%
minimum exicts, Proceed to step 13 using the positive sign in

equation (58) for all further calculations. If the inequality

does not hold, proceed to step 8.

Check for O °H < 0 . If this inequality holds, thea go
Yo y?

back and take the negative sign in equation (58).

Using starting values and the negative sign in equation (58),

iterate equation (64) for Q v

a2 . .
Compute ‘G H , equation (55), using starting.values and

3a?
the C v from step 9.

2
Check to assure that O H > 0.
s~ <

Proceed to step 13 using the negative sign in equation (58) for
all further calculations,

Line Computation

Using starting values and the correct sign in equation (58),
as chosen by preload II, iterate equation (64) for CLy. Use

preload I to obtain the approximate iteration range.
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1k, Use the Q y from step 13 along with starting values to compute
the following:

CL  from equation (56)
F from equation (57)
gb r from equation (58)
(}/) o from equation (59)
qs . from equation (60)
;f. from equation (61)
H from equation (62)
'5'\ I from equation (63)
}:'\ - from equation (63)
A 7 from equation (63)

15. Use scme numerical integration technique to integrate the

fcllowing:
¥ for X. for X
C}.S r for c)ﬁr
'5'\ 7 for X 1
SoIzfor. W
.x 7 for >\7

16, Use integrated values from step 15 as starting values for

the n + 1 line,
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VIITI, CONCLUSION

The problem analyzed in @his paper has apolication in the fields of
space flight and guidance. In space missions such as the earth-moon
transit, the return to the earth's surface presents many problems. One
of these problems is how to re-enter the earth's atmosphere with a wingless
vehicle and make a point landing on the surface, at the same time mini-
mizing the factors which cause strain on the human crew.

In this paper, the elimination of the oscillations due to first and
second time derivatives of pitch and yaw and the second time derivative
of roll is significant since, it is believed, these cause unnecessary
strain on the vehicle's crew. This, in effect, replaces the dynamical
motion of the altitude loop by its instantaneous steady state solution.
The choice ofC1y as the control variable seems physically realistic since
this angle lies in a plane verpendicular to the roll axis and any change
in this angle will be a roll of the vehicle about this sxis. Such a
control should allow maneuverability in three space.

In order to generate trajectories mumerically, the initial auxiliary
variables must be known. In this paper no attempt has been made to find
these initial variasbles. It is assumed that they are known. If all
initial values are assumed known, then trejectories generated numerically
will satisfy the constraint and the characteristic equations. Satis-
faction of the characteristic equations is a necessary but not sufficient
condition for the existence of an optimum. A further necessary condition

for the existence of a2 minimum is easily obtained from the Maximum




Principle, i.e., the condition that

A% =,
Pre%s

is necessary for a minimum of the integral D.

73
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APPENDIX I

DISCUSSION ON WHY [C ] IS A NON-ZERO MATRIX

[e] -{[ rd [ K] [Aw]}’l
(g [}

exists since it can be shown that the components of its product exist.

The inverse of [C_] is developed below to show that it exists and is

non-zero.
[c] ~. [SRCY( I, SROY - Lgy ST - L, CRCY) + SY(-Lgy SROY + I, SY
- Iyg ORCY) = (L SROY + Ly SY - I, CRCY)

CR(Lgy SRCY - L, SY = L, CRCY) - SR(-Iyz; SRCY - Iy SY

+ CRCY(-I. SRCY =- SY + I,, CRCY 1 SR ILp, - SY + CRCY I
22 Xy ¥z

+ I,, CRCY)

Ly
CRIxy-SRIyz

SRCY(Lyy CR + Ly, SR) + SY(~Ly CR + Ly SR) = CRCY(L, CR + L, SR)]

IxyCR-IyzSR

CR(I__ CR + L, SR) + SR (L, CR + I,, SR)

Thus from the definition

Lel0el™ =[1]

it follows that [ C ] is a non-zero matrix,.
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APPENDIX IT-

UNIQUENESS OF SOLUTION FOR q51°

The expressions for sine gbp and cosine GSD were found by using

! &
the quadratic formula. The radical thus carries the sign + . In order

for S%P + C°

P =1 the plus sign must be chosen wita the sine radical
P-

and the minus .sign must be chosen with the cosine radical or vice verse,

Either combination will give a solution for ¢p . Tue unicue solution

is chosen from these two by ccoasidering the way in which the ccordinate

systems were defined, Consicer

2 2
(Vg *+ Vgy)
wiere J = CR V.. = SR Vi, .

Q= 0 . This implies J = 0.

4
(14
3
ey
e}
]

Then,
SP = =+ Vax
3 VRX + VlziY
and .
tn b = -




<7
FeS

Tne coirract sigas are thus,

SP = ard CP =

79
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APPENDIX ITI

UNIQUENESS OF SOLUTION FORqS .

=

The expressions for sine ¢y and cosine ¢ ¥y were found by using
the quadratic formula. The radical thus carries the sign * . In order
or 2Y + 021' 1, the plus sign must be chosen with the sine racical
and the miasus sign must be chosen with the cosine radical or vice versa.
ither comdination will give a solution for ¢Y Tre unigue soluticn

is chcsen frem these two by consme*mg the way in which the coordinate

systems werc defired.

Consider
2 2 2 2
SY = rmv /v*-y RZ = (VRZ +K )(Vrmv - X%)
2
g + £°)
vhere X = CP VP.Y - SP VRX
Lev O, = 0. This implies K = Vpy

Let G = 90° This implies Vo = O.

Then, SY = =+ VRY

and tan é = =-Voy .
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Now rastrict C}S - < & T .
R ° y, ar < qb v T

O| <&
Vi
R2 %
\ 3y
—VR‘{
o
Tae correct signs are thus,
-V_. +V
sY = RX and CY = R .

2 2 2 2
v v v
4 /VI_LZ - \fm -
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AN OPTIMAL GUIDANCE APPROXIMATION THEORY*

Henry J. Kelley**

Analytical Mechanics Associates, Inc,

SUMMARY
20127 A

Synthesis of optimal guidance approximations is undertaken by means
of a perturbation theory approach. A simple example is treated analytically
and an approximation for the optimal control including linear and quadratic

feedback terms in the state deviations from an optimal reference trajectory

obtained. Atk

INTRODUC TION

The problem of guidance in the neighborhood of an optimized nominal
trajectory has previously been studied from slightly differing viewpoints by
Kelley (Ref. 1) and Breakwell and Bryson (Ref. 2) who have developed a
procedure for synthesizing linear feedback guidance approximations optimal
in the same sense as the nominal trajectory. The present paper deals with
synthesis of higher order approximations by means of perturbation theory
applied to the Euler-Lagrange equations, and presents a transparently simple
illustrative example in which quadratic feedback terms can be calculated
analytically.

- e e am e e e e e e e e ek e s e e e e e e e de e wn e e e e e e e mm e e me am e = = e e -

* This research was performed under Contract NAS 8-5314 with the Aero-
dynamics and Astrodynamics Division of NASA Marshall Space Flight
Center, Huntsville, Alabama.

** Vice-President
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PROPERTIES OF THE NOMINAL TRAJECTORY

The nominal trajectory is assumed to satisfy the equations of state

Xp T (X Xy VoY B

i=1,--,n
and the Euler-Lagrange equétions

Ai =-S5 i=1,--,n

-a_H=O ’ k=1’--,'{’

subject to boundary conditions at the initial and terminal points consisting
of appropriate specified conditions and transversality conditions. The
function

E'
H = Z"i 8
i=1

is the usual Hamiltonian and the >‘i are Lagrange multipliers.

It is assumed that the reference solution of (1), (2) and (3) which
represents the optimized nominal trajectory provides a minimum of a
function P(x._l » T Xp tf) of the terminal values and is a normal non-

f f

singular extremal without corners which satisfies the strengthened forms
of the Weierstrass and generalized Jacobi conditions. While some of these
assumptions are introduced merely for convenience, and can be relaxed,
others, such as the requirements of nonsingularity and nonconjugate end-

points, are essential to the development following.

(1)

@)

@)

4)
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PERTURBATION THEORY

For simplicity of exposition, the system of differential equations
(2) and (3) will be written in the form

zp = fp(zl’— ) zzns t) (5)
p=1,--,2n
in which Zys - =2, are identified as Xy =Xy and Zop10” Zon as
>‘1’ - - >‘n’ and the control variables ‘STt 73 have been presumed

eliminated by use of the Weierstrass condition. This will always be possible
within the framework of our assumptions since the strengthened Weierstrass

condition implies an unique minimum of H( VAT /) ). In practical applica-

tions it may be preferable to retain the control variables and egs. (3), but
this will necessitate no essential change in the arguments to follow.

It is desired to develop an approximation to the family of solutions of
the system (5) in the vicinity of the reference solution corresponding to the
nominal trajectory. The parameters of the family will be the deviations of

the initial state variables from their reference initial values

€ = %t "%ty - a=L--n (6)

and the family will be represented in terms of a Taylor series expansion

n n 2
_ ﬁaz 1 o a Z
zp=zp+2‘a€ Tz A S @
r r s
r=1 r, s=1

p=1--2n

Here, and in (6), the superscribed bar signifies the reference solution of (5).
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If (7) is introduced into the system of differential equations (5) and
the right members of (5) expanded in the eq, the resulting expression

4 D 3z L
Hf[zp Z.S‘Rr‘“‘zl‘, ﬁf;cres*----]=
r=1 r,s=1
B (B ar B %,
fp(z) [Zae r] %Za—zp— Z. 5€_B—€qh€r€s]
q=1 g=1 q r,s=1 rs

. 23z D3z
12. az az [Zae :l[ ﬁ—er]-b--_ ®)

q,u=1
P= 1,' -,211

may be regarded as an identity in the parameters ¢_. This leads to a system

of differential equations governing the partial derivatives which are the coef-
ficients in (7):

dz B3 2z
ditg_g = ZB—RS_Q. p=1,_-32n (9)
€ z € ! -1 .
Tr q=1 q r r=1, ,n
2 2n 2 2n 2
3" z — of 372z o7 f dz_ dz 9z 90z
d __ p _ Z_R——!LJr D 1 4, _4d “] (10A)
dt de_ ¢ dz Q¢ aes dz azu aer aes aes aer
r s a=1 q T q,u=1
p=1--,2n
r=1,- -, n#s
s=1,--,n
2 2n 2 2
3%z — of 9" z dz 9dz
d___p _ Z P ___q Z q _u (10B)
dt aeraer 9z ae ae az az aer asr
q:l q qu_.
P= 11_ -:2n

r=1,--,n
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The process may be carried out to obtain differential equations for the partial

derivatives of any order occurring in (7) provided that the functions fp are

smooth enough to permit the required differentiations.

If numerical procedures are intended, it will usually be desirable to
work with the partial derivative coefficients and the differential equations (9)
and (10), while, on the other hand, for analytical treatments it will often be

convenient to introduce the linear combinations

n
3z
Gzp = -a?ner , p=1--,2n
r=1 T
n 622
2 - 1% P
6 T 2 Z. O€, d€, €€ » P=L--2n
r,s=1
which satisfy the systems
8z, = Zazq b2y p=1--2n
q=1
2n 2n 2
of " f
2, _ YV _p 52 1 z i
6 z, = 37 ) % + 3 Sz 5z 6zquu
q=1 a q,u=1 1
Pp= 1:' -,2n

The boundary conditions applying at the terminal pbint of the trajectory
are of the general form

\I’q( 205~ =sZgps 1:)tf =0 , q=1,- -,n*l

and these may similarly be expanded as

(11)

(12)

(13)

(14)

(15)
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2n
= afs

ACEEEDN t)+{z [Gz+f6t+62+f5t+ S-z:(azu+fu%§)5t
u=1

2n 2
Ay 527 AL ¥*
6t \’
R N R SCELOEE D) 525z (625 + £,00)(07, + 1,00
s,u=1

2n 2 82 T
L

1__q42
Z.az at(6z5+f86t)6t T3 3¢2 0t" + ---
s=1 s t tf

q= 1:' —,n+1

=0 (16)

The symbols 6t and 52t appearing here are the first and second variations

in the terminal time, defined by

D3t
6t, = ) =t (17)
f %€ r
r=1 r
n
2, _ 1Y f
67t = 3 Z 3¢, %€ s (18)
r, s=1

and the various partial derivatives appearing are evaluated at the terminal

point of the nominal trajectory at the nominal terminal time tf.

At the fixed initial time to’ the initial conditions are given by (6), which,
with the introduction of (7), may be regarded as identities in the parameters €

as also may the terminal conditions (16). Thus boundary conditions may be
derived for the system (9) and (10) in the partial derivatives, or, alternatively,

for the system (13) and (14) in the variations.
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COMPUTATIONAL CONSIDERATIONS

If only first order terms of the expansion are sought, as in Refs. 1 and 2,
the linearity of the system (9) or (13) may be exploited by the introduction of the
corresponding adjoint system, by means of which the expansion coefficients may
be calculated economically over a range of "initial" times extending from the
initial to the terminal time of the nominal trajectory. No such economy measure
is available, however, in the computation of ‘second and higher order terms, for
while the system (10) or (14) is linear, the nonhomogeneous terms are quadratic
functions of the first order solution, and hence the systems (9) and (10), or (13)
and (14), viewed as a simultaneous system, are nonlinear, and the adjoint

device is inapplicable.

ANALYTICAL TREATMENT OF AN EXAMPLE: ZERMELO'S PROBLEM

The simple problem for which the linear feedback terms were calculated
in Ref. 1 affords the possibility of obtaining the quadratic feedback terms
analytically as well. A particle moves with constant speed V relativeto a
medium which itself is in motion with velocity components u and v, presumed

constant. The equations of state are

V siny +u (19)

N.
1

.
I

Veosy +v (20)
The steering angle ¥ is the control variable of the problem, and the minimum

time path from a specified initial point to a fixed destination point (z*,x*) is

sought. The extremals are straight lines and collision guidance is optimal,

The Euler-Lagrange equations are

X. =0 1)
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)\1 cosy -Xzsiny =0

and the optimal steering angle y is determined by

"Al
siny = , cosy =

9 9 1/2 1/2

(>‘1 +k2 ) (A

The transversality condition
H(tf) = -1

applies at the terminal point.

The numerical data for the example and for the path chosen as a nominal
trajectory are

z = z = * = t =

zo 0 zf z 1 to 0

x = X = * = t =

xo 0 xf X 2 tf 2

V =1 u = 1/2 v =0

_— —_— 1 _

)\1—-0 Xz—-v—-l ..
sin‘i/- = 0 cos)7 =1

The equations for the first order guidance solution are

8z = V cosy bY
6x = - Vsiny 8y
63, = 0
61, = 0

2

(22)

(23)

(24)

(25)

(26)

(27)
(28)

(29)

30)



g2
5)\1 cosy - 6>\2 siny - ()\1 siny + Xz cos77)6'y =0 (31)

These are subject to boundary conditions

1]

bz(ty) = z(t)) -'z'(to) (32)

6x(t)) = x(t,) -§(to) (33)

at the initial point and

Gz(Ef)+ (v sin)_/f+ u)bt, = 0 (34)
6x(Ef)+ (v cos;7f+v)¢5tf = 0 (35)
5A1(€f)(v sin)7f+u)+5x2(ff)(v cos;7f+v) =0 (36)
at the terminal point. Equations (34), (35) and (36) are obtained from the
vanishing of the first order terms of the. general expression (16).
The equations for the second order guidance solution are
6%z - Vcos?ézy - Vsiny 6—2)1? (37
52x = -Vsiny 6% - Vcosy -6;—2 (38)
8%x, = 0 (39)
5%, = 0 (40)

62>\1 cosy - 62)\2 siny - (A siny + X, cos'>7)62-y

- _ 5.},2
+ (-)\1 cosy + >\2 siny) - = 0 (41)




These are subject tc boundary conditions

1]
(o]

<2
6" 2 (to)

i
o

52 x(to)

at the initial point and

2 - = eoiT -
) z(tf)+Vcosyf67(tf)6tf+ A% sm'yf+u)62>tf =0
sz(f ) - V sin¥, 67(5 )6t + (V cos Y, +v)62t =0
f £ o7 )0 I£i i
8% X (E)(V sin¥, + u) + 6%y (F)(V cos % +v)
= — - — .2
- v [Gll(tf) cos‘yf-ﬁkz(tf) sin‘)'f] =0
<2 .32
2 >\1 +)\2
f f

at the terminal point. Equations (44), (45) and (46) are obtained from the
vanishing of the second order terms of the general expression (16).

The first order guidance solution is that given in Ref. 1:

bz udx
57='V(t“-ot)+vz- °
f "o (tf-to)
6xo
oy = - ¥

in which the simplifications sini'_ =0, cos ‘)7 =1, v =0 of the specific

examples have been introduced. The corresponding second order results are

0x Oy
2 (o] u 2
5 = — . = §
Y V(tf—to) ov %7
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(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)
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6y2 _
6%t = 5 (F-t,) (50)

and the guidance law incorporating both first and second order terms is

2
2 5z udx u -6z udx
6y +6y = - + - - = = + =
V(Ef-t) Vz(tf-t) ZV[V(tf—t) Vz(tf—t)]
+ 6x [ -0z + udx ] 1)

V(G- t) V(- t) vA(E - t)

In this expression, to has been replaced by instantaneous time t, as

appropriate for continuous closed-loop system operation.

CONCLUDING REMARKS

A computer simulator study is in progress to determine the effects of
the second order feedback terms of the example upon system performance and

guidance accuracy.
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SUMMARY
>0754 A

This paper derives four constants of the motion for optimal thrust trajectories
in a central force field. Two additional constants of the motion are derived

which hold for singular thrusting arcs as well as impulsive thrusts.

The paper applies the constants of the motion for the impulsive thrust case, to
obtain a set of initial conditions for the classical adjoint variables to be used ac
a good approximation for a solution of the finite thrust arc by the indirect

method. L TR
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INTRODUCTION

The constants of the motion of a system of differential equations play an important
role in characterizing the solutions. This paper develops an application of the
constants of the motion to the indirect methods for obtaining solutions of optimal

thrust trajectories by iterative procedures.

The optimal trajectories for a thrusting vehicle in a central force field have been
under study for some time by Lawdenl, Leitmannz, Melbourne3, Breakwell4, and
others. Four constants of the motion for this problem are well known. This paper
derives two additional constants of the motion which hold for singular thrusting arcs
and impulsive thrusts. The paper also derives the four known constants of the
motion. The paper applies the constants of the motion for the impulsive thrust
case to obtain a set of initial conditions for the classical adjoint variables to be
used as a good approximation for the solution of the finite thrust arc by the indirect
method.

As is well known, the indirect methods for obtainingr solutions of the optimal thrust
trajectories by iterative procedures suffer from an extreme sensitivity of the solu-
tion to small changes in the initial conditions of the adjoint variables. In effect,

the success of the gradient techniques, employed by Kelley5 and BrysonG, is largely
due to their ability to control the incremental step size for small changes in the

thrusting logic.

Once a good approximation to the optimum control thrust logic has been obtained,
the gradient techniques prove too slow for convergence and resort is made to the
classical indirect methods for the last few iterations. If a good approximation to
the initial conditions of the adjoint variables were available, the indirect methods

would be in more general use.

A good approximation to the initial conditions of the adjoint variables, for a given
problem may be obtained through a study of the limiting impulsive solution to the

same problem. Letus assume that a solution to an optimal thrust trajectory
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exists and that it is known. Then, if one could improve the efficiency of the
engine (thrust/weight ratio), a shorter burning arc could be obtained for aa
improved optimal trajectory. In the limit one would obtain the impulsive
thrust solution of the given problem which would indeed require a perfect
engine. Thus, we can lock at the impulsive solution as a limiting point in a
simply connected region in the space of the initial conditions of the adjoint
variables. Intuitively, one might expect that an iterative procedure could be
developed which would start with the known impulsive solution and converge

to the required finite thrust solution.

This report applies the constants of the motion for an optimal impulsive tra-
jectory to obtain approximate valu.es of the adjoint variables to be used for an
indirect method solution of the optimal trajectory with finite thrust, The
specific example illustrated in this report is the minimum fuel required for

bounded thrust between fixed initial and final position and velocity states.
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‘I. The Equations of Motion

The equations of motion of a thrusting vehicle in a central force field are

given by
R = - b3 * '%T
r
1)
. k
m = - —
c
where |T| =1, and c¢ = constant,

The necessary conditions for minimizing the fuel consumption with time open,

or minimum time for fixed fuel, are given by

T = —&—‘ , (2)
and
k =k if (A - 2% >0
k= k. if (Al - “;" < 0) 3)
k . SkSk o if (A= 22,

The adjoint variables are solutions of the Euler-Lagrange ditferential

equations as follows:

A A- R
3R

_“—34-3“
r

>
1

(4)

o - Kk
o = ZX-T.
m .




The final equations which yield the optimum trajectories (if any exist at all)
are given by

- R k A
R=-p,—+—-—-,

r3 mlkl
X =-ui3+3uR'5xR,

r
m=- £,
(¢
k

° =M

To obtain the proper solution, it is necessary to make some statement
about the initial and final conditions of the state variables. For the purposes
of this paper it will be sufficient to characterize all the solutions of the
equations of motion through the constants of the motion. For this reason
no further discussion of the initial, final, or transversality conditions will

be carried out.
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(5a)

(Sb)

(5¢)

(6d)
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II. The Constants of the Motion

This section contains a derivation of four constants of the motion of
equations (5a) - (5d). For the special case of the singular thrusting arc

and the impulsive solutions, two more constants of the motion are given.

By forming the vector cross product of X with équation (5a), the vector
cross product of R with equation (5b), and adding, the following equation

results

)\:;R_“Rg)\:o. (6)
r r

A X ﬁ + Rx A = - u
Thus, three constants of the motion are given by the vector equation

4 : \

dt(lxR+Rx)&)=0 )
The equation may be written as a vector constant

AxR + Rx A = A. (8)

In order to obtain a more convenient form for the optimal thrust logic,

equations (5c) and (5d) may be combined as follows:

4

dt(mo)=rhcr+m<".7 ll
A
- g —_—
——kc +km. (9)
Thus
4 (mo) = £ (- 29 . (10)
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If the coefficient of k is positive we use kmax’ if the coefficient is negative
we use kmin' In either case k is a constant so long as its coefficient is not

identically zero. On the other hand, if the coefficient of k is identically zero,

then
at (mg) = 0 ., (11)

This condition is satisfied along a singular arc so that

ma constant , (12)

Since |A| - _n(_:g = 0, it follows that |A| is a constant. Thus the optimum

thrust logic may be stated simply as follows: either

k = constant if Ial __mcSZ 0
or (13)
IX| = constant if Y --mcg =0

It is now possible to obtain the fourth constant of the motion. Form the
dot product of equation (5a) with A, the dot product of equation (5b) with
R, and add. The result is

S T
A*R+R-X ==2-(0"R)

(14)

d AR k d

“cka C3) T M
r
Since
2|

a M xog d 1

kgt = w oot M kINgT 6
and (15)
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it follows that

X
d l__ o, _ k d
k3t & -e) T m ar Il
2
=-—c-1-2—mc- (16)
dt

Thus a fourth constant of the motion is given by

R-A

3
r

AR+ - L mo = n (17)

From equation (10), an altered form of this constant of the motion is

'.. R.x |x‘ o _
AR +pu r3 -k(—m—-'g)—h (17a)

This is the so-called Hamiltonian. In particular, for the singular arc

%mcr:O,

and (18)

.X‘R-*-uR.sk = h .
r

Another constant of the motion may be obtained for some restricted
cases. Form the dot product of equation (5a) with X, the dot product of
equation (5b) with R and subtract. The result is
d

4 A-R - R-1)

AR - R-2A T

S spd R Ky (19)
r
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In addition , we have

d . e Lo
R(X-R)—X-R*F)\'R

:X-R+2ux.3R

r

It is possible to eliminate \ - R between equation (18) and equation (20) as
follows:

A°R AR d

. r= 94 . A- R _ AR . d
A R-dt (A - R) - 2u 3 =h-pu 3t & (mo)
r r
It is also possible to eliminate u A '3R between equation (19) and (21) as follows:
r
1l a-mr- R.-x)+J—"§-|£ & ogm =% (mo +nt-X- B

If | | is a constant (this is the case for the singular arc) we have as a fifth
constant of the motion

%x-ﬁ+§n-i+l’;—l-°—10gm-ht=b.

Moreover, for the same restrictive case, another constant of the motion is
given by

To obtain the form of these new constants of the motion for impulsive thrust,
some care must be taken in approaching the limit forms.

It is necessary to distinguish between impulsive thrusts in the interior time
domain between the initial and final conditions, and the impulsive thrusts

(20)

(21)

(22)

23)

(24)



108

at the boundaries.
a) Interior impulsive thrust.

From equation (16) we have

2
-cg-{ (lngp)g-i- Ix] =§;2 (mo) (16a)

Integrating over an interior impulse, we have

d

-c {Iog (m+) -log (m’) } at

X = (§ o)’ - G (mo)” (25)

It is plain that during an interior coasting arc, the engine is off, k=0, and

‘_;_t_ (mo) = 0. Thus, it follows

-c { log (m") - log (m") } %t— Ix] =o. (25a)
Since the jump in log m is not zero, it follows that for interior impulses

d -
E |X | =0 ’
and (26)

Since A is a continuous function with continuous derivatives (up through A )
then the maximum value of |X | is the same constant for the entire interior

domain between the initial and final conditions.

For impulsive thrusts in the interior of the domain we have that g—t- (mo) =0.

Thus, the two new constants of the motion for the impulsive case are identical

to those for the singular case within the interior domain.
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b) Boundary impulses.

For a boundary impulse, aqf(m 0) vanishes only at one end of the impulse.
Thus, equation (25) becomes
d +
+ either = (mo)
-clogm: a(-lihl = dt
m or - —d—(ma)-
dt

The positive sign is associated with a terminating boundary impulse, ‘and the
negative sign is associated with an initiating boundary impulse. Since from
equation (10)

Smoy = E(al -2, |

the product of an infinite, impulsive thrust and a vanishing switch function
is indeterminate at an impulse. Equation (25b) may be used to evaluate this
;ndeterminacy. At both the initial and the terminal boundary impulses, we
have

m+ d k om
- ¢ log = a|1|= *;;(lll -2 ) -
m

In addition, from equation (5d), integrating over the boundary impulse

o -0 = clAl (1—+$—1—_-)

m m

Since at the interior boundary immediately following the impulse,

(25b)

{25¢)

@7

(28)
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it follows,

Thus, at the boundaries we have
mo)” = (ma) = c|A| .

The constants of the motion for impulsive thrusts at the boundaries are seen
to be identical with those for interior thrusts as well as the singular case, so
long as we interpret the state variables referred to their interior values at

the boundary.

The natural boundary condition for minimum fuel is given by of' =1, Itis
now possible to obtain the natural scaling factor for Ikl from the equation
mt
IA] = £

C

The initial value of 0 may then be obtained from

+

m
o - L
initial -

m,

initial

To summarize: the general constants of the motion (which hold for all solutions)

are given by

AxR+RxA = A,

. .o pY
u"3R+k-R-k(;-l-%)=h;
r

for the special case of the singular arc and for impulsive thrusts on the

interior domain, the following additional constants hold:

(29)

30)

81

32)

(33)
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Al

1, . + 2 5.y Al - =
§-XR+3R)\+calogm ht = b ,
(34)
mo = d ,
for the singular case |A| = constant,
for the impulsive case lxlinitialz Iuﬁnal .
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III. The Impulsive Solution

Given two position vectors in space, and a central angle, &, the vector
velocity required to pass a free fall trajectory between the two position

vectors is given by

i tano /2 p

R = P T R r, T, sina (Ry - Ry) - (35)

Conversely, the velocity vector at the other end is given by

7 tang /2 p
By = - P, Ry + r, T, sina (Ry - Ry) (36)
The value of p is the magnitude of the angular momentum,
p = |Rx R| = constant during coast. 37)
This parameter may be used as a variable for the purposes of differentiating
the total impulse to obtain the optimal impulsive trajectory.
X o egs i . . N
Given the initial vectors Rl’ R1 and the final vectors R2, R2 , itis
required to find the minimum fuel necessary to go from condition one to
condition two in a central force field. Let
ey . _
AV1 = R1 - R1 ,
(38)
C o4 -
AV2 = R2 - R2 .
The scalar magnitudes of these impulsive changes in velocity are given by
ov, = lav |
(39)
6v2 = |AV2|
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The condition for minimum fuel is

—a%(av1+6v2) =0 . (40)

The resulting equation is given by

6vy(AV,) - gap-rll SCACYAR —;’—p;r'zz =0 . (41)

Equation (41) is an eighth order polynomial in the variable p which may be
solved by standard numerical techniques. For each real root, it is possible
to evaluate the total scalar impulse and we may choose the niminum of these
as our solution. The change in mass required to execute each successive
impulse is given by
+ - e 6vi/c _ (42)

m. = m,
1 1
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IV. The Initial Conditions for the Adjoint Variables for Impulsive Thrust

The impulsive change in velocity may be obtained by integrating equation (5a)

+

c s e m, A
- = -clog— 5 . (43)
Rl Rl gml- BN

—

The value of |A\| is obtained from equation (31)

m+
|A|=_i

c

The initial conditions for A are

A=

+ o+ -

m, R - R

) (44)
c 6v1

The initial value of 0 is given by equation (32)

+

2

1 m.-
1

g

and is valid only for impulsive thrusts.
In order to obtain a first order approximation to the initial value of o for
the finite thrust case, resort is made to a Taylor series expansion of Om

about the initial time,

(om)" = (Em)" + FEm(t-t) (45)

From equation (25b),




N .
m X1'>‘1

]

d - -
dt(CJ'm) = ¢ log

my

The value of the burning time, t- to, may be obtained from the finite,
constant mass flow.

my 2 A, il m
U(to) = - + (m 1) lk |
m, k m, 1 m,

To obtain the initial value of A, it is necessary to obtain the variational
state transition matrix. During coast, we have

The variational equation may be written as

3R . 3R
Fom | bia, MR G
2 da 3 5
dt T T

Let the o, be the initial valuesof R and R. The solution of equations (48)

and (49) is the so-called variational state transition matrix, ®(R, R). The
differential equation for the adjoint variable A is given by
Y A AR
A = -u 35 + 34 == R
r r

This equation is identical to equation (49). Since the initial value of ® is the

unit matrix, it follows that

115

(46)

(47)

(48)

(49)

(50)
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fact) R
{ . = ®R,R)( .
L A(t) A(t,)

The first three equations of equation (51) may be evaluated at the terminal

time immediately preceding terminal thrust.

-1
. OR . ~ 3R
x1 B (ax ) >‘2 T W_x 7 Yax

(o] [o] [0

’Xl

The vector A, may be obtained in a manner similar to A, from the impulsive

solution.

Equation (52) is the required solution for the initial value of A.

The initial values of )‘1’ il and o, should afford a good approximation for

1

the iterative indirect method.

(61)

(51a)

(52)

(83)




116A

References

1. Lawden; D. F.:; "Optimal intermediate-Thrust Arcs in a Gravitational
Field,'" Astronautica Acta, Vol. 8, No. 2, p. 106, 1962,

2. Leitmann, G.; "On a Class of Variational Problems in Rocket Flight,"
JASS, Vol. 26, No. 9, p. 586, 1939.

3. Melbourne, W.G.; "Three-Dimensional Optimum Thrust Trajectories
for Power-Limited Propulsion Systems,” ARS Journal, Vol. 31, No. 12,
December 1961,

4. Breakwell, J,V.; "The Optimization of Trajectories,’ J. Soc. Indust.
Appl. Math., Vol. 7, 215, 1959,

5. Kelley, H.J,; "Method of Gradients,' Chapter 6 of Optimization Tech-
niques, Academic Press, 1962.

6. Bryson, A. E. and Denham, W. F,.; "A Steepest-Ascent Method for
Solving Optimum Programming Problems, " Jour. Appl. Mech. (Trans.
ASME, Series E), pp. 247-257, June 1962,



/
qﬁo\ 117

OPTIMUM RETRO-THRUST IN A GRAVITATIONAL FIELD

By

Carlos R. Cavoti

Space Sciences Laboratory

Missile and Space Division

General Electric Company
Box 8555, Philadelphia 1, Pa,

Report No. 1
August 30, 1963

Contract NAS 8-11040

Prepared for

National Aeronautics and Space Administration
George C. Marshall Space Flight Center
Huntsville, Alabama




118

OPTIMUM RETRO-THRUST IN A GRAVITATIONAL FIELD

by

Carlos R, Cavoti

Space Sciences Laboratory
Missile and Space Division
General Electric Company
Philadelphia 1, Penna.

Report No, 1
August 30, 1963

Contract NAS 8-11040

Prepared for

National Aeronautics and Space Administration
George C. Marshall Space Flight Center
Huntsville, Alabama




119

CONTENTS

Abstract

List of Symbols

Preliminary Considerations on the Variational Problem
Equations of Motion and Specific Optimality Problem

Explicit Form of the Optimum Retro-Thrust Program Along

A var. Sub-arcs

3.1 Integration of the State Variables Along the A

var,
Sub-arc

Integration of the Equations of Motion Along A = 0 Sub-arcs

Conclusions
References

Figures

Page

15

19

21
23

24



120

Abstract 4
anstract ?oq:;D /B%

The planar motion of a mass-point vehicle subject to the inverse square
central gravitational attraction of a spherical planet and to a tangential
retro-thrust force is considered.

It is shown that for minimum fuel consumption (free-time, free-range)
problems, the control variable (mass-flow rate of the engine) may be

obtained explicitly along the intermediate retro-thrust sub-arcs in terms

of the state variables of the problem. The variable retro-thrust sub-arcs
are shown to be integrable in closed-form and thus completely determined,
except for three constants of integration. The variable retro-thrust sub-arcs

are such that the magnitude of the vector velocity is constant along them.

A udtdar~
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LIST OF SYMBOLS

Acceleration of gravity on the surface of the planet
Altitude above the surface of the planet

Mass of the vehicle

Constant Lagrange Multiplier

Generalized Coordinate

Radius of the planet

Independent variable for parametric problems

Time

Velocity

Curvilinear abcissa on the planet's great circle
Dimensionless velocity

Angular position with respect to the fixed system
Independent variable variation at the terminal points
Dependent variable variation

Angle between the vector velocity and the local horizon
Dimensionless mass-f{low

Dimensionless mass

Variable Lagrange multiplier

Dimensionless curvilinear abcissa

Boundary condition

Dimensionless radius
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() = da; ()

Subscripts

I

Initial point

F

Final point

~
"

Reference value




123

1. Preliminary Considerations on the Variational Problem

Consider the set of equations

¢[553_J[(’/g,...,?’2,2,?)=0 , =1, .
/2/17:’/7 = ’2(2‘) mox ’ 2"z§2'§2;- P)

with the boundary conditions

/9 ? F) O , {¢=1..,rs2n+1. (2)

Any solution of Eqs. (1) and (2) is expressed in terms of the variables
< <
%(z) s, A(T), TLsT=s7, . (3)
The function 2{2’) is called the "'control variable' of the system. Since the
problem has one degree of freedom associated with the control variable A ’
an optimum requirement may be imposed on the solution arcs. The following
variational problem of the Mayer form is therefore proposed: ''Find in the
X . .
class D' (*) of arcs 2(2’) ’ /2(?) , 2; §2J§ 2;_. » satisfying the
constraints /¢¢ =0 , \772; = () , that arc which minimizes a generalized
function L) = JZ(C;‘{I s %F 12} ;2,’.—). of the end-values, "
From theory (Refs. 1 to 6) it is found that the first necessary conditions

for an extremal in the class D' of arcs considered are that the Euler-Lagrange

sum /] = '9‘ (’Z’)/@: ,» and the switching function /12 (2‘) = Qg—f

satisfy the equations

[A] ]: /].g =O E] ‘.”)-‘-,n P -?i =A?.) > (4)

(*) Arcs on which g (T) is continuous while g,(?) may be only
A .

piece-wise continuous in the interval /?} > ?;-) .
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_d _ “A-g¢P , (5)
d?Q_A?_o , & gt

and either one of the following

Az(?) = () , for admissible dA(7) 20, LsT=7 , (6)

A;{(T)é O , for admissible Jﬂ(’i") 20 » 2;52': [y ) Q)

'/1,2 (Z’) s O ., for admissible dAm) £ 0 , 2;§ 7%, (8)
on every sub-arc ?} = ?; s 7S ’Z; = TF forming the extremal arc,

)i' (T) continuous

with a set of n non-simultaneously vanishing multipliers

on every sub-arc, such that the [(r+1) x (2n + 2)) - matrix of terminal values

o A
bt o, P om 2]
F"ag ‘r ﬁ’ag t P‘az; ¢ ﬁ;’Z*QF
‘F
(9)
9. g o2, EYA
I F

is of rank R < r + 1, and satisfying at junctions of sub-arcs the following

Erdmann-Weierstrass vertex continuity conditions

P(?C'_O) = B(7c*‘0) s

{
(10)

Q(7.-0) = Q(r.+0) ,
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where Z;.- O and 2;.+0 are values of the independent variable immediately

before and immediately after the junction. For a normal non-singular extremal,

as here assumed, the set of variable multipliers })‘ (Z') is unique and the

constant multiplier /Do in Eq. (9) may be set /oo =1
The preceding considerations have been made in order to provide the

fundamentals for the problem to be treated in the following paragraphs.
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2. Equations of Motion and Specific Optimality Problem

Consider the planar motion of a mass-point vehicle (m) subject to the
inverse square force field of a central, spherical, non-rotating body of
radius r,; (see Fig. 1). If we assume that the thrust vector is applied in
the direction of the velocity vector but in opposite sense and that the central

r 2
gravitational field is expressed by g = g, [——— , then the
L+ h

non-dimensional equations of motion of (m) in terms of the intrinsic system

{orbital) with unit vectors (un ’ ul‘) , are written

J
gf,sg_zﬂi,.o , o

/

AN
1
l »
e
§.
1))
i
Q

(12)

ﬁg = 2’ /i‘:j-e + M/OZQ = 0 » (13)
? /

%59_ /i_zfz)wezo, (19)

A
]
\k\.
+
&

I
O

(15)
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In the previous equations,

§—QEV§ J 2=—VK—) ‘V;;=/°’$) )
R R

I

r
/-—- = , 2,= 2 ’ = -
‘s % K "”19,/%
7
=7 s YU =S .
’/‘771. VR

The retro-thrust magnitude is given by T = - (dm/dt) Ve and thus the thrust

per unit of initial weight of the vehicle assumed on the surface of the

central body (r = r,) is —L— = /2 2y . It is assumed that the
mz G,

e
retro-thrust is bounded, i.e., Tyjn = T £ Tmax. Consequently, in

Egs. (11) to (15) we will take

2 16
’z’ < < 7 (10)

)m/n ] /?) = /zma.r. s z = T S F .

In particular it will be assumed that A min = 0- The set of Eqs. (11) to

(15) is of the general form indicated in Eq. (1). Therefore, our previous
considerations in paragraph 1 may be readily applied.

The variational problem to be analyzed in this paper is that of finding
in the class D' of arcs ?‘-(?) ’ ’2(2‘) > (= fy.e9 5 ,

[‘7,'§:?,"/°’ Iy =2 , ¢4=99 ?5"/“) satisfying
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Eqgs. (11) to (15) and prescribed boundary conditions of the form

]rf(g > 4. :2}:2;-')"0) (=135 , {=1.,r 211,
‘I F

that arc which minimizes the function LQJ = -/IF .

Since A (’Z’) is the control variable associated with the mass-flow
of the engine, the previous problem may be formulated in physical terms

as that of finding the optimum retro-thrust program in order to transfer the

vehicle from given initial to given final conditions with minimum fuel

expenditure. From the necessary conditions for an extremal analyzed in

paragraph 1 and Eqgs. (11) to (15) we find that the equations of the extremals

are

.

= 0 , (17)

2,

¢25/o’_25&n9=0, (18)
D=2 4 i;’e ;"29 o, (19)
VAR
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— , -—
¢5=/a./.2—0, (21)

[4/5 7 =9 (22)

$
A}E T_y 2em8 ) 24n8 , y u0f 2 =0
JA 2 =7 53 *3 P T4 2‘,/-0‘5‘/;7 2 (23)
)=y a6 ~ !, 1
{‘£=3+))’/'+%mg+%we/_—+z—_f/af =0, (24)
9 .
[A}ea )3, - 3?9,4%2@19_ ) c/‘;’f MQ/T",?T (25)
’ A
¥4\ = D ) e —_
{ja 5"'3/2'0’ (26)
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A=A, y (298

mnn.

AN
|

Y

x|
+.

4

v

o

1 2 K4 2
(30)
Y emofZ L) M = const.
A
Eq. (30) follows from Eq. (5 ) after considering that A’Z‘ =0 and

that time-independent control boundaries have been imposed. Thus, Eq.

(30) holds along the extremal in the interval 23- < 7= 2;_- . The
latter equation is a consequence of the Euler equations and it may replace

any one of them if so desired.

From theory (Refs. 1 to 6), it follows that the Weierstrass necessary

condition

W= /1()()., 2’,3, Q?)-A/){).,?,g,z’)_/@’-2’)/1?, =

4

= [, ’Ve . v)A/?_ Lj=1tesS (31)
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must be satisfied at every element ())t, ?, ? 3 g’)s E » (E = extremal)
[4

) : ”n .
for all admissible sets (?, q, Q.);é/?,g , g) , satisfying Egs.
¢ ¢ ¢ Y
(11) to (15). Also from theory, it follows that in our case, the Clebsch-

Mayer condition

A 2 +A. 7

) 20> SN 32
A2 sz/ Rg’ Z f'A' >2Z,—0; ‘;/ /,)5,()

7%

must be satisfied at each element ()f » C, ? s 9’ ’,J)E £ by every
'3 (3

2 . . . s e
set (’7 3 ‘7 );é /0, O) consistent with the equations of variation
¢ n+!

of .
j'. Z, _ 7 =0 , ¢=171,..,5 . (33)

{ o4 net

Owing to the form of Eqs. (11) to (15, the Legendre condition vanishes
identically. From Egs. (27) and (3]1) it is also found that along /1 - var.
arcs the Weierstrass necessary condition is satisfied in its weak form
W = 0. From the explicit expression of the Weierstrass condition and

introducing
Y Ve
= [V, —e ) ). A

*
it is found that the Weierstrass test may be written Wg Ww-w 20 )

(where the asterisk indicates values on E) and furthermore that, since @
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is linear in the control A4  the Weierstrass condition implies that the

optimum control, inthe bounded interval of control ( A . A ), may
min max

be expressed by the minimality condition

2 <2<2 {w(v ,/a /22/ (35)

The Weierstrass condition and the minimality requirement in Eq. (35) are

graphically shown in Fig. 2 assuming the strengthened form of Eqs. (28)
and (29).
From Eqs. (11) to (15) it can be readily found that the extremals of

our problem are non-singular since the value of the functional determinant

4 = (36)

3R

is unity. In fact, the previous determinant has a diagonal of elements equal

to unity, i.e., A ’ =1, (=102;.;5 and ¢§ =1,
7 %
R = 152;..55 | while the rest of the elements vanish. Thus, along any
extremal sub-arc the slopes ? (7) B (= /5§ , are continuous and
g .

) ..
moreover g‘ (Z’) and ))‘ (?) have at least first order derivatives

with respect to T .
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3. Explicit Form of the Optimum Retro-Thrust Program Along /l -Var,
Arcs

In this paragraph we will derive a closed-form solution for the optimum
variable retro-thrust program. Problems with free-time and free-range

will be considered. That is, the boundary conditions are assumed such that

our,
QW{ - O and/or a‘”{ = O , and - { = O and/or
&, 28, 97
a.”'( - 0
37,

The Transversality Condition implies that at terminal points of the

extremal, the following (2n + 2) sub-conditions of transversality

U _ zz o’g. -0 (37)
8%1 z (g

3.1
S * 5% =0 .
%‘F 4

o)

o4y (39)
2%

|
N
N
!
.\‘#Q'
N
Q
N
i
O

el A _ag?P d7_ =0, (40)
ar,"( y ‘)F
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must be satisfied for any set of differentials (dg s dg ,
¢
I

‘e
d?’I , g 2‘,__) # /0,0, o, 0) consistent with

]Z-E 2‘77{ a’g +ﬂdq.f_gﬂd?}*_9_{r(_d7;=0. (41)

4 2q ¢ g ¥ X %
tI /3
At the initial point we will take ?'I =0 , §I = O ithus dZ =0,

and dsl_:O. Then, for the free final range, free final time problems,

9”( = O and

28 2q

F 1

_"iﬂ — O . Thus, a’g (i,c dz ) and F a’?,'__ are different
22 'F F

from zero and may be totally arbitrary in Eqs. (41). Consequently, from

here considered, we will assume a7 =

Eqgs. (28) and (40) it follows that

[0y - -B , oy :/g_’.@_/l) ] (42)
Q%F F I ‘ F

Since U = - = - P = /’P-) =M =const ,and

./1 =0 , Eqs. (22), (30) and (42) lead to

(43)

Y(?)= 0

N
(11N
~N
1\}

¥

(14)

[}
o
fl
a
°
S
S
N
WA
N
A
~N
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Moreover, since our minimal problem is LQ = -/u,__ = m/n. , then
no boundary condition is imposed on ? and the coefficient of dg
S Sk
in Eq. (38), vanishes. Thus, a’g = cfa is different from zero and
5. F

arbitrary and then Eq. (38) leads to

oY =-R )>5 =1 . (45)
29 F F
ya
Eq. (27) leads to
Y, e LY. = O, (46)

and thus from Eqs. (24), (26), (43) and the total differential of Eq. (46),

)g,(?) = K3 = const., (47)
along the /1 var sub-arc. Eq. (47) implies that

(48)

Y sin0 4 Yemo. [ Ly 1 _Joo0.
S Ep

From Eqs. (27), (30), (43) and (44),

. 49
Nein6 _ ) M0 Yy ol 2 __/ .o,

2 3 /02 /0 2/0’

and then from Eqs. (48) and (49) it follows that
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))321&»19./.2)‘)’(:439:0 . (50)

Eqs. (17) to (26), and the total differential of Eq. (50), lead to

| 2 )
Y (22..’. 0 _[A% , 5nB)sing| _2) 2 es?0=0 . D
3 2 - 2
Ve M p

Consequently, the compatibility condition for a non-trivial solution

(%%, Y5, %,%)#(0,0,0,0,0) is

2 sin® _ 6 cme/i A )
Va S 2P
O T Ln o6 2 ces O =O‘(52)
-2z cs°6 (224__’_ Mge_ 2% 4 S‘.":)SinQ 9,
AV VA

The vanishing of the previous determinant leads to the important expression




137

A sin 6
/02

A YV, = » (53)

which gives explicitly the retro-thrust program along A-var. extremal

arcs for the minimum fuel consumption problem proposed.

3.1 Integration of the State Variables Along the A Sub-larc.
. var, ——

An interesting physical conclusion becomes apparent once Eq. (53)
is replaced in Eq. (19). In fact, after this is done we readily obtain that
along Avar sub-arcs, Z = const. Thus, the variable retro-thrust

program is such that the magnitude of the vector velocity is constant.

Now, from Eqs. (18), (20) and (53) the following integral may be

derived

L’n //CO'S 9) + 22//0 = C, = const. (54)

Also, from Eqs. (18), (21) and (53) we have

Ln //a) + _!_= C = const. (55)

2pv,

Finally, from Eqs. (17), (18), (20) and (54) it is found that

~fF
S = Fp)ap 56)
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where

exp (G - Sfpor*)
/02 { _ exp- [2/(:' 2)]‘}{/

*© (57)

Flp) =

Thus, the variable retro-thrust sub-arc has been completely determined

except for three constants of integration.
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4. Integration of the Equations of Motion Along A =0 Sub-arcs

For /1= ).

min (i.e., A = 0) the well-known integrals of the

planar two-body problem are obtained. In fact, the energy integral leads

to

2
2 ) 2 58
WL 28 2 _2°_2 _ H - const (>%)
S ’
and from the integral of area we obtain
(59)

J
/025 =/33m9 = C; = const,
From Eqs. (58) and (59) it may be derived that

_ C:S (60y
/ Y, +{H + ’/Cf)’/z cos (¥~ o))

which is the equation of a conic section in polar coordinates with the origin

located at one of its foci. Introducing

{ =c’ e’ = /+C;2H , (61)

Eq. (60) réduces to the well-known form

~

_ 4
/= 1 + e coo (-w) ’ ©e
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where Ct.)° , in the case of the ellipse, is a constant of integration

determining the position of the pericentron with respect to the fixed system,

¢

~
f— u)o is the true anomaly (measured from the pericentron), [: e
o
is the non-dimensional semi latus rectum of the conic and e the eccentricity.

For H < 0 the conic is an ellipse, for H = 0, a parabola and for

H > 0 an hyperbola. For elliptic motion

I\

{~= a//"’ez) 3 5 3 (63)

o)

H s -

, (Q = semi major axis) ; (64)

NI\

/2
C,=|a(t-e*) .

3 (65)
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5. Conclusions

The minimum fuel consumption problem, in the class of orbits satisfying
the hypotheses made. in paragraph 2, with final time and final range not
specified, has been considered. This class of problems (free time, free
range) gives a lower bound for the propellant needed as compared to any
other solution of the problem satisfying an additional condition in the final
time and/or range.

For bounded thrust magnitude (between a given maximum value and zero)
the extremal arc may be composed of sub-arcs of three types: full retro-
thrust, intermediate retro-thrust and zero retro-thrust (or coasting sub-arc).
The sub-arcs actually forming an extremal arc, their sequence, and location
of corner points has to be investigated in each specific boundary-value problem
proposed. In general, these depend on the boundary conditions imposed.

The intermediate retro-thrust sub-arcs have been obtained in closed-form.
The three constants of integration characterizing these sub-arcs may be
determined from the values of the state var-iable.s at the end-points or at
the corner points,

It has been shown that along variable retro-thrust sub-arcs the magnitude
of the vector velocity is a constant.

The variable retro-thrust sub-arcs as well as the coasting sub-arcs map
into points in the planes of their corresponding constants of integration. This
suggests a method of piecing the extremals which will be considered as an

extension of this work for given boundary-value problems.
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ABSTRACT
9 C)Q.S v }C>S>

The comparison of one and two impulse orbital transfers, basic to the
solution of the optimum n-impulse problem, is extended to include all co-.
polar elliptical orbits of equal angular momentum. Familiar vector expres-
sions are used to identify, for all cases, a specific family of two impulse
transfers that require no more total impulse than the one impulse transfer

A b

applied at the intersection.

I. INTRODUCTION

Two impulse orbital transfer studies have been the subject of many
scientific papers(1'3)during the last few years. Recent'advances, combining
both the analytical(h"S)and numerical(é)viewpoints, have virtually solved
the problem in its most general form. The next logical development in the
general area of orbit transfers is an attempt to ascertain the degree to
which the two impulse solution approximates the optimum impulse solution.

At the core of this study is a comparison between one and two impulse
transfers. If Ting's suggestion(7)for copolar coplanar orbits--that there
always exists a two-impulse transfer between the two orbits that requires
less impulse than the best one-impulse transfer applied at the intersection—
could be proven true and extended to inclined orbits, then it would naturally’
follow that for n arbitrarily large, the n-impulse transfer would regquire less
fuel than any transfer using fewer impulses. This comparison, which assumes
no time constraint, was carried out by Horner(s)for coplanar ellipse to
circle transfers. He found that for his problem, except for notable cir-

cumstances, the optimum one-impulse transfer could always be beaten by a
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two-impulse transfer. Barrar(9)proved that the one-impulse transfer between
intersecting orbits was always inferior to the Hohmann transfer, assuming
that the orbits could be rotated to produce a Hohmann transfer. The note
presented here is concerned with fixed coplanar elliptical orbits of the

same angular momentum.

II. FORMULATION OF PROBLEM

Consider a plane polar coordinate system with origin at a common focus
of two ellipses. Designate one orbit (the initial orbit in the transfer
problem) as A (See Figure 1) and define the ©-reference line as being in
the direction from the origin to the perigee of orbit A. The other orbit,
designated by B, has its perigee displaced by an angle y.

The velocity vectors of particles moving in the two orbits can be

given, using familiar hodograph representation(lo)ahd complex variables by
. h . . -
Ea(g) = -2 (Q1+e, el9) (1)
Pa
B(8) = M (1 +e ell® -y)) (2)
Py

Then a new function I, representing the difference between the velocity

vectors at any point O, is defined as
10) = [@ - &) - G - ko (3)

where the * refers to the complex conjugate. It is easily seen that if the
orbits intersect for some (6, 02), I(Ol) and I(8,) represent one impulse

transfers between the two orbits.
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Consider a family T of transfer orbits, defined by parameters e,

h
5%, and T. T is the angular displacement from the reference line directed
to the perigee of A. Then

hy
Py

B, (0) = 1+ et @ -T) (1)
and for every triple (et, gf,t') where the transfer orbit intersects the
initial and final orbits, there exist two impulse transfers using that par-
ticular transfer orbit.

Finally define functions M, (i = 1,4), such that they represent two
impulse transfers between A and B and such that they are defined only at
those values (e, g%, T) where the transfer orbit intersects the initial and

final orbits. Then
ey, B0) = [ -8 - G -BPP[G-8) - G -RTT O
t

A particular triple (et', %E s IJ) defines a transfer orbit T'. If
that orbit intersects orbits A anz B, then there are four possible ways of
making a two-impulse transfer. The subscripts to the functions M can be
arbitrarily determined by assigning some kind of order to the .points of
intersection. Thus the four combinations of points of intersection represent-
ing the possible transfers define the Mi's.

The optimum two-impulse transfer is then given by the least possible
value of the Hi's. It is this value that is compared to the lower of the
two values I(6y) and I(8,). That this least value of the Mi's is always
less than the lower values of I(8;) and 1(02) is what Ting(7)implied was

true and has been the subject of some research.




ITI. ORBITS OF EQUAL ANGULAR MOMENTUM

Due to the dependence of the functions M; on the points of intersection
between the orbits involved, the closed formulation of the general problem
in terms of the given parameters is quite laborious. However, if orbits have
the same angular momentum, an interesting Property greatly simplifies the
analysis.

Assume now that A and B have the same angular momentum. Then

h 6)
P

|
!
& |7

and the function I can be written as

10) = [ -h) - G - &)
= % (e: + eg - 2e,e cos y‘)% (7

The function I is now a constant, not dependent upon the angle 6. Thus
for fixed copolar orbits of the same angular momentum, the difference between
the velocity vectors is a constant.

The one-impulse transfer between the two orbits isg easily seen to be
given by equation (7). However, the formulation of the Mi's has not been
considerably reduced. If, in the vector triple describing the transfer
orbit, EE is fixed and set equal to %, the problem becomes susceptible to
analysis? For this reduced family of transfer orbits, due to the simplifica-

tion brought about by the equal angular momentum property, there exists only

one M function defining the two-impulse transfers.
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M(et, T) = (ei + e% - 2e,ey cos -r)%:

kell=p kol j=p

+

[eg + e.g - 2epe, cos (y - 'r)]% (8)

Now equations (7) and (8) are easily recognized as being similar to
the magnitude of a side of a triangle given by the law of cosines. Define
€15 €p> and g:b(ll)as vectors in directions of their respective perigees,
having magnitudes equal to their eccentricities. From Figure 2, it is seen
that M becomes only a function of the vector ey. From the law of cosines
and the triangle inequality, the value, of M can never be less than the

value of I. However, if
v <
e —§a+k(§b-ga), 0Sk<1 (9)

then it is obvious that the value for M (the two impulse transfer) is equal
to the value of I. There exists, therefore, a family of two impulse trans-
fers that give the same impulse as the one impulse transfer. Only if

€a T & in which case the initial and final orbits would be coincident,
would this family vanish.

The nature of the orbits for this family of two-impulse transfers can
be deduced from qualit’ative reasoning. Subsequent algebraic investigation
of the intersections of these orbits proved this reasoning to be accurate.
Since the angular momentum is not changed in these transfers, fhe only com-
ponent of the velocity that is altered is the radial component. This fact,
when combined with another property of copolar ellipses of the same angular
momentum (they intersect 180 degrees apart), leads to the realization that

this family represents a splitting of the impulse at the intersection point
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of A and B. Each orbit with angular momentum equal to the angular momentum
of A and B and with gé defined by (8) passes through both intersection

points of A and B. In the two impulse transfers that equal the one impulse,

a certain percentage of the radial velocity change is used at the first inter—
section point and then, after a 180 degree coast, the final velocity change

injects into orbit B.

IV. CONCLUSIONS

It has been shown here that for copolar elliptical orbits of the same
angular momentum, there exists a specific family of two impulse transfers
that use no more impulse than the one impulse transfer at the intersection.
If it is true for everye,, €, and % combination that there exists at least
one k, 0S k< 1, such that the total impulse as a function of the angular
momentum is not a minimum at ;%:= %, then Ting's suggestion would hold true
for orbits of the same angular momentum. However, a general study, by means
of véctor analysis, of the quantities involved was unable to produce this
proof. Indeed, recent intensive numerical investigations(lZ)have shown that
there are many orbital configurations for which the optimum two impulse and
one impulse transfers vary by only a slight amount. Three years have shown
that the general proof of Ting's statement is elusive; perhaps more investi-
gation in this area will be able to demonstrate further regions of validity

(or invalidity) of his suggestion.
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FIGURE 2. TRIANGLE INEQUALITY PROVING
> o h
M= T FOR 5
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20 57 SUMMARY />S

It is proved, given two elliptic orbits that are tangent at a point not
an apsis, and given that a pair of near by intersections is obtained by suf-
ficiently small variations of the elements (from the tangent condition),
that the impulse for transfer at one of the intersections will be less than
that for transfer at tangency.

For the case that the intersections are caused and deepened by changing
only the relative orientation, numerical results show the one impulse trans-
fer to pass through a minimum. On the same graph there is also plotted the
impulse for optimum two-impulse transfer and it is seen that near the one
impulse minimum there is a region where one-and two-impulse transfers require
the same impulse to two parts in 10° for the moderately eccentric cases chosen.
It is suggested that this type of behavior may be the fundamental reason why
two-impulse transfer is so close to optimum impulsive transfer even if it

is not really the optimum. Z7“jJuAJ
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1IST OF SYMBOLS

e, p, w Orbital elements; eccentricity, semi-latus rectum, argument of perigee
(orbit 2 with respect -to orbit 1)

C Given by 2 = p"ae_-]_2 -2p e,€p COSw é22

D Given by D2 = phel - 2p2 )&, cosw + e22

E  Given by p? = p3e12 -{p+1)p e,e, cosw + e22
J Impulse to transfer in unit °f/%—;

Q Unit vector perpendicular to perigee direction
r Radius

v Unit vector perpendicular to radius

€ Half angle between the two intersections

B Gravitation constant ( G times mass)

[/ Perigee of orbit 1 measured from direction bisecting the angle
between the intersections (arbitrary when introduced)
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I. INTRODUCTION

The study of impulsive transfer between two given coplanar elliptic
orbits around an attracting body has so far yielded no proofs showing
whether one, two, or more impulses yield the minimum impulsive transfer.

There are special cases in which three-impulses are better than two,l but
for the most part the best two-impulse transfer between two given orbits
seems to be practicallyunbeatable. It was noticed very early in studies at
the Space Sciences Ia.boratcry2 that the optimum transfer orbits were very
nearly tangent at both departure and arrival points to the given orbits.
This is suggested also by the fact that co-tangential transfer—a’l" is a good
approximation to optimum two-impulse transfer over a wide range of orbit
shapes. However it is known that, given two elliptical orbits which are
tangent at a point which is not an apsis, the optimum two-impulse transfer
is slightly better than the single impulse transfer at the point of tangency.
This can be proved by an analysis similar to that below and it is evident
from the numerical results presented.

Now given the optimum two impulse transfer between the two originally
given orbits one must ask whether or not the single impulse transfers utilized
at either the departure or arrival points could be replaced by a two-impulse
transfer that would require less total impulse. If the answer is affirmative,
then three impulse transfer is better than two, 4 better than‘ 3, etc. However
if a better two-impulse transfer cannot be found to replace either of the
transfers at departure and arrival then perhaps the optimum two-impulse trans-
fer is in fact the optimum impulsive transfer. This paper does not purport

to answer this question definitively. However, it is demonstrated that over
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a narrow but finite range of orbit shapes for shallowly intersecting orbits
one-impulse and optimum-two impulse transfer require practically identical
total impulses. Thus we are led to investigate the properties of a single
impulse transfer for two orbits that intersect shallowly. Such pairs of
intersections are obtained by applying small variation(s) to the elements
of one or the other of the two orbits starting from a tangency condition that
is not an apsis. The theorem which will be proved is that one of the two
intersections requires less impulse than the tangency situation and the other
requires more as the intersection is initiated. Further the one requiring
less impulse is expected to pass through a minimum as the intersection deepens.
The fact that the tangent case is not an optimum single impulse transfer for
fixed shape orbits that may have arbitrary relative perigees was shown by
L. Ting’.
In the last portion of this note numerical results are presented
showing, for the case in which the intersection is produced by rotating the
two orbits, the nature of the one impulse minimum. For this range of shapes
the impulse required for the best two~impulse transfer is also indicated,
and it is seen that the two curves are extremely close together over a range
of shapes near the minimum of the one impulse curve. The fact that this
region is finite in width may meke it possible for the transfer orbit for
the optimum two-impulse case to satisfy such a condition at both ends. This
may be the fundamental reason why two~-impulse transfer is so close to the

optimum impulsive transfer even if it is not really the optimum.
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II. THE SHALLOW INTERSECTION

Consider two elliptical orbits that are nearly tangent. These are
characterized by the elements py, e # 0, w; =0 and P, = pzpl, e, # 0,

w, =w. The angular reference direction is taken as perigee of the first
orbit and thus w is simply the difference in the two perigee directions.

Ve require w # O, e # 0, e, # 0 in order that the tangent case be not an
apsis. Thus circular orbits are excluded from the discussion. For Py = Pp
(or p = 1) the intersections of the orbit (if any exist) mmust lie 180° apart
and we exclude this case because a shallow intersection is to be characterized
by a small angle between the two points of intersection.

In order to determine the points of intersection of two coplanar orbits
we first introduce an arbitrary reference direction so that w; = 4, w 5= [
+ w. The angles are illustrated in Figure 1. Let one of the intersections
be at €. Equating the two expressions for radius at this point gives

= Py - P2
1 + e;cos(e-f) 1 + e,cos (€ f-u) (2.1)

r

Thus
Py * pye, cose cos(f + w) + re, sine sin(f + w)
(2.2)

=P, * pye; cose cos f + Pye, sine sin /)

Now we choose § so that the terms involving sine cancel, thus requiring

P1es sinw
tan § = =
pzel - plezcosw p<e - ecosw

i
e, sinw

(2.3)
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The value of € is obtained from

- PL - P2 _ 1-p2
cose = =
Pye,c08 f - p1e,cos(f +w) pZejcos § - eycos(B tw) | (2.4)

By using

sin g = e, sinw {2.5)

D
cos § = pRey - ey cosw (2.6)
<D

We find

2 _ 4 2 2 2

D = ple;” - 2p%e,e, cosw + e, (2.7)
and

cose = ff.-.]_' (2.8)

Since there are two intersections it is clear that they must lie at
+ € and the reference direction must bisect the angle between the two inter-
sections. Suppose now that the orbits are tangent to one another and that
this is indicated by the subscript (T). This requires cose =1 1and the
two values of €7 are either £ O, or + 180°. Which pair it is depends on the
quadrant chosen for f§ or on the sign of D. e suppose that @ and D are chosen
so that the tangent case will be €p =10, as indicated in Figure 1. Equation

(2.8) yields

Dp = p -1 (2.9)

We are concerned with small variations in the elements P15 Py €, e,

and w from the values at tangency and since only the ratio p2/p:L is involved
we have replaced py and p, with p (=v§2/pl). Thus p =pop + 3p, €] = eyp +

Bel, etc., where 8p, 8ey, etc. are the smll changes.
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We assume € <<1 and we may write

4
2
1 - cose my & av - o COSE 5. (2.12)
2 A ey Y

where a , are the four elements: p, e1s e2, and w. (Note that D involves

J

the elements, a 37 and its derivatives are included.) Thus

L
€=+ [y 2los€) 5, (2.13)

In the numerical comparisons below the shallow pair of intersections
will be generated by rotating one of the two tangent orbits with respect to
the other. Thus p, ey, €, are considered fixed and only w is changed in the
proper direction. We find

2

D DT 2 pTeqe, [cosz cos (wT Sw)] ~?2 peqe, sinw Sw

and

P
e =X ’-’?__11/ 2eje, sinw (Sw) . (2.14)

In the coefficient of Swno distinction is made between wT and w.

ITI. ONE IMPULSE TRANSFER AT SHALLOW INTERSECTIONS

The velocities at the point of transfer are expressed in units of

H/py. Thus

‘_7.2: _ (3'1)
- = Itedy

Py
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5

(T + e,Q) (3.2)

i
R

.

e
-

V is the unit vector perpendicular to the radius at the transfer
point and gl, 92 are unit vectors perpendicular to the perigee directions
(See Fig. 1). The impulse to make the transfer, in units of Vi /pl, is

expressed as

j=Lteds -pV - perQ (3.3)
= f)
T Q-plte-peiyy _Y(@Q-p+¢
P )

where

C=eQ - pey 2 (3.4)
Then

PR pPP=02+@-pP+20-p)C ¥ (3.5)
where

cR = p2e12 - 2peje, cosw + e22 (3.6)
and

Q'K'—‘eng'Y.-PelQl'Y. (3.7)

e, cos (e -¢-w)-pel cos (¢ - @)

The angles (¢ - § - w) and (e - ¥) are the true anomalies of the transfer
point on the second and the first orbits respectively. By using Eq. (2.5)
and (2.6) the angle § is eliminated and Eq. (3.7) reduces to:

= 4 Sog€ g2  sine

c - b~ (1 -plp eje; sinw (3.8)

1<
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where
E? = P3e12 - 1+ p) pe e, cosw + e22 (3.9)

Thus
(1 - plelepzsinw sine
D

5? p2 = ¢+ (p - 1)% - 2(p - l)[%-z cose + ](3.10)

Now we can make the comparison of the impulse for the tangent condition
jT with those for the two points of intersection: jxl and sz. The only
difference between these two cases is the sign of € and so only one expres-

sion (Eq. 3.10) is needed. For the tangent case

.2_ L2, (r- 1) 2(p - 1) Ep° (3.11)
T pp2 T p 72 pp<Dyp '

Again we assume € to be small and consider only small changes (infinitesimal)

in p, &5 €5 and w.

Since we may write

. 2 .2 . . . . .
Jx1 ~d1 T (Jxl - jT) (Jxl + JT) o (Jxl - JT) ZJT (3.12)
we find

G - L8 - o (p -1)° _ (Pr-1)? |

— 27 |\P PT P= PT2 (3.13)
2 2 .
2(p-1) E2 2( pr-1) Eg _ 2(p-1)= e85 sinw
+ (- +
( p2D cose PT<DT N pD )

Now all the paired terms in Eq. (3.1 ) can be expressed as Taylor
series about the tangent condition and the leading terms involve 8p, Seq,

Be'2 or Sw. The term involving € however has in its leading termﬂ/Sp,\/o‘:l,
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V@E%; or Vﬁi:from the expression for e . (Eq. 2.13). Therefore as long as
the € term does not have a zero coefficient it will dominate the expression

at first as the small changes are added. Since € can be positive or negative
it follows that for one intersection the impulse to transfer is at first

less than that required at tangency, and for other intersections it is greater.

It is believed that the restriction allowing only changes that cause

the tangency to yield a pair of real intersections will make all of the
paired terms in Eq. (3.12) positive. This is the case for changes in w
(Eq. (3.14) below), but it has not been proved for changes in p, e, Or e,.
However if it is true, than a minimum one-impulse case will occur as the
intersection is deepened by a continuous change in any of the elements unless

higher order terms interfere.

For the case that p, ey, e, are fixed and only w is varied, Eq. (3.13)

yields:
. : 2
. _ ~ 3162 sinw 2 E2 (p-l) (3‘14)
- Jr s {8“’ PR TS

Removing € by using Eq. (2.14) gives for e neg.

3 . elezsinw \/g) 919231nw (3.15)

The terms neglected in Eq. (3.15) begin with 8w3/2, and 3whas to be
positive in the direction which yields the pair of shallow intersections.

Since the sign of the coefficient of Sw is positive Eq. (3.15) has a
minimum which is given by

Sw) = €1eo sinw A
(8w, 5 T (3.16)




166

The corresponding values of € and jxl - jT are

e = _P ejep sinw | (3.17)
B o271 2(p +1) EZ/D?

and
2
(3 iy ) = - iil?22 sin“w
x1 Tm AJTQP +1)3 EZ/D2 (3.18)

IV. NUMERICAL COMPARISON OF ONE AND TWO-IMPULSE TRANSFERS NEAR THE TANGENT
CASE

A program for one-impulse transfers was developed by G. A. McCue who
supplied the one-impulse data presented. In addition several two-impulse
optimum transfers for the cases considered were supplied by G. A. McCue
who utilized the program described in his report on Optimum Two Impulse
Orbital Transferé.

Two orbit pairs were selected for the study. They are: case (1)
p2 = 1.2, e] = ey = .2; and case (2) p2 = 1.8, e = .2, ep = .6. The cor-
responding values of w for tangency are: (1) wp = cos™L .6 = 5321301 and
(2)“’T = 11023741, 1In Table 1 there are collected the values of the con-
stants and the values of 3w, €, (jT - jxl)m for both cases.

The values indicated "(pred.)” were obtained from Eqs. (3.16), (3.17),
and (3.18) while the values labeled "(comp.)" were obtained by the one
impulse computer program. It can be seen that the predicted values are quite
close to the actual values obtained and the equations do give, for the case
of an orbit pair rotated to tangency and then to shallow intersections, the
apprcximate size and shape of the one impulse transfer versus perigee angle

curve.
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A program for obtaining the best 180° two-impulse transfer A4 was used
as a guide in testing results because of its simplicity. In fact the data
used for the two-impulse curves shown in Figures 2 and 3 were obtained with
this program. Points on this curve obtained by the two-impulse optimization
program are indicated by black dots. They are indeed at a lower total impulse
than the 180° curve but on the scale shown the difference is not significant.
The investigation of the real nature of these small differences is a subject
for further work.

In both cases shown the one and two impulse curves agree to within
2 parts in 10° over a finite range of relative orientations and hence of
relative shape. In this region there is no practical advantage as far as

total velocity change is concerned whether one or two~impulse transfer is

used.
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TABLE 1. PARAMETERS CONCERNING ONE IMPULSE TRANSFER NEAR TANGENCY

CASE 1

CASE 2

Fixed elements

p2=102, el=62= -2

P2 =1.8, 6] = .2, ey = .6

Perigee difference
for tangent case
(deg)

53.1301

110.3741

Impulse at tangency

.08534686 (1971.31)%*

.29656L (6259.9 )%

unit “/F- 7pl

(Sw)m (pred.) .059 L7
(deg) (comp.) .060 172

(¢ )m (pred.) 2.56 2.51
(deg) (comp.) 2.56 2.60
(3, = 3p)p (pred.) | -.000348 -.00087

(comp. )

.000348 (8.03)*

-.00089 (18.9)%¢

% In ft/sec for P, = 5000 miles

#* In ft/sec for pj = 6000 miles
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IMPULSE

IMPULSE IN UNITS OF «/T"I

0.0854
QO TANGENT CASE -2—2' =12 e;= 0.2
62 = 0.2
0.0853 | /-ONE IMPULSE
TRANSFER
0.0852 |-
BEST 180° TWO-
IMPULSE TRANSFER
0.0851
® OPTIMUM TWO-IMPULSE
TRANSFER
0.0850 1 1 1 1 1 }
5320 5322 53°4 53°6

ANGLE BETWEEN PERIGEES

FIG. 2 COMPARISON OF ONE AND TWO-IMPULSE

TRANSFERS FOR NEARLY TANGENT ORBITS
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0.2970 ¢
QO TANGENT CASE
i 0,
T 1.8 e, = 0.2
e = 0.6
Q2968
IMPULSE IN UNITS or./_;‘_
|
02966 |
ONE IMPULSE
- TRANSFER
0.2964 |-
= BEST 180°
TWO-IMPULSE
TRANSFER
0.2962 |-
R ® OPTIMUM TWO - IMPULSE
TRANSFER
0.2960 1 | 1 1 1 1 1 ]
110°3 4 5 .6 7 .8 .9 1o .

ANGLE BETWEEN PERIGEES

FIG.3 COMPARISON OF ONE AND TWO-IMPULSE
TRANSFERS FOR NEARLY TANGENT ORBITS
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The purpose of this report is to present a matrix method for
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representing the general cubic E aijkxixjxk and to give directly
i,

the coefficients of the cubic subjected to the transformation

A + Bi, i=1,2, «++, n, This method enables one to com-

pute the coefficients of the new cubic form in any order and to

Ll pn

apply approximation in the final summing stages.
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A MATRIX REPRESENTATION OF THE GENERAL CUBIC AND
ITS TRANSLATION

The matrix representation of quadratic forms XTAX is
well known, [1], where XT= (xlxzo .o xn), and A is the nxn
matrix (aij)' The algebra of matrices and its application to
space missile theory is available in excellent form in a number
of available publications, [2], [3]. Higher dimensional matrices
mentioned in the mathematical literature occasionally but mostly
as an introduction to the study of tensor algebra [4]. In this paper
we use the usual laws of matrix algebra and the extended asso-
ciative law for multiplication of nXnXn matrices by vectors,

X, XT, and XD (the depth element) and, with this, represent the

n

general cubic Z y %" 17"k in the form xT/xP/ax. 1tis
1, J:

convenient to denote the nXnXn matrix A in such a way that

"
= %1 1z 0 %in
%21 %22 %2n
a a . a

inl in2 " ° ° inn
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represents the ith slice of A. In general the element aijk s

in the ith slice jth row and the kth column. We have for

! .
The ith summand of XDA is xiA1 . Thus, XT/XD/AC is

. & T 1 . .
given by ), xiX A X. From this it follows that, in the gen-
i=1
eral cubic, the coefficient of
x3 is a x3 is a x3 is @
i u *2 Y% %2220 v % Y “hnn.

2
Partial coefficients of the XZ. xj term appear for xixj, for
1

2 .
x.xx,, and for x,x_, and are ¢ ., @ ., and ¢ respectively.
iji1 j i iij iji uii
We note that aiij and aiji are the ij and ji elements of the

ith slice of A and ajii is the diagonal element of the ith row,

ith column of the jth slice. Selecting a.,.=a .. =4¢a, . 1isin
iij iji jii

line with preserving symmetry. The term X, ¥.X, occurs with
J
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th ti . .
e partial coéfficients aijk’ aikj’ ajik’ ajki’ akij’ and akji
and choosing these equal preserves symmetry in the nXnXn
3
matrix A, As a check we note that A contains n elements
3
and that n of these are associated with the Xi’ i=1,2,*+, n,
, 2
that 3n(n-l1) are associated with the xixj, i4=j, and n(n-1)(n-2)
with the xx:%, (L j, & $)
Translation from X, reference to A where X = Y+,
X, ='Yi+pi is given by
. n 1 n Y |
T, D T T
X /X /AX = ), x X AX = ), (v, +8,)(Y4p)  A'(Y+p),
‘ i=l i=1
. T . A . .
with B~ = (pkpz- .o ﬁn). Using the distributive law and matrix

multiplication for these matrices, we have
n - iy | Tl o |
T
D (inTAlYﬂBiY A1Y+yiﬁTA1Y+BiBTA1Y+

i=l

TR il Tl 1
y, Y Alﬂ+ﬁiYTAlﬁ+yiﬁTA1;3+piﬁTAl;3).

An examination of this sum yields the coefficients of the yiyjyk:

3 -
y . has the coefficient «a . ., as expected
i iii ’

2 _ . .
AR has the coefficient (aiij + aiji + ajii)’ i "T_ Jy

yiyjyk has the coefficient (aijk + aikj + ajik +

a_]kl + ali + ale)s (i, Js k, %)'
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n

2
' has the coefficient Zl P % Z:l ﬁtaiti

+ Z [3 which simplifies to
t=1
n
t; Byl@es * %+ %uge)

Vi y (for i}j) has the coefficient Z B.(
t=1

n
L Blojyy ¥ %4y ) F Z Belogse ¥ %550

t=1 t=1

%5 T %)

which may be written more compactly as

E pt p(i, j, t)

where p(i,j,t) means the summation is over all permutations

of i,j,t for given i,j.

n n
The coefficient of v, is Z (B Z Bs t51 E ([St Z atisﬁs) +
t=1 s=1

B e PB,, which may be written more compactly as

s
i 038

t=1 1 s ist' t
)
BB (e ot .
t=l s=1 ISt)}

-—“
The constant term, as expected, is Z ﬁ S A B, that is, the

t=1
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original function XT/XD/AX with X, replaced by B..
i

To illustrate, we find that the coefficient of

3

Y5 18 %5550

2 is + a + a
Ys¥7 557" “575 7 “155°’

n
2 .
Y5 18 21 Belois5t %5e5 * %55¢)
n
Yg¥7 18 t_zl Pelois, t, 7)
n n
s tgl s=21 (PP hes + ugq + 950

Transformations of the type used to test matrices for property
"p'" [5],[6] suggest that a more judicious selection of the elements of
the coefficient matrix of the general cubic will simplify the coefficients

——

of the translated cubic and yet preserve the symmetry of the Al.

Select the aijk in such a way that
3, .
ax, implies a = a
i iii
' . . e .. +te. .=2a. ., a. =0, for i<}
axixj implies e = iji iij iji®  jii
a., a. . =a . =0 for i>j
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implies a=a,, +a = 2a

XX ijk T %Ky T %k

ik

= = = = 1 < 3 .

%ik = %ki T iy T Yi - 00 for 1< k
Examination of the modified nXnXn matrix A reveals that

it is somewhat like the completely triangular matrix in skel-

1
eton [7]. In fact it is completely pyramidal in that A1 may

contain nonzero elements in every ij position, Al contains
only zero elements in the first (i-1) rows and (i-1) columns,

: n . .
»++*, A contains only one possible nonzero element, a .
nnn

the

. . .. 3 .
It is of interest to note that the coefficients of the xi occur 1n/k

a

111’ 0222. e, nnn' Also we note

dimensional diagonal a
that

. . 3

n elements are associated with the xi,

(n-1)n

2n{n-1) - 5

2
elements are associated with the Xixj’

2(131) elements are associated with the xixjxk.

From this we see that

n
n+ {2n(n-1) ___(n—;)n} + 2(2} = n(2n+(1))(n+l) :Z LZ
i=1

which verifies the pyramidal skeleton of A.

In this case A is called /(1,1,1), (n,n,n)/ pyramidal
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where the (1,1, 1) gives the only possible nonzero element in the
first slice and the possible nonzero base is the nth slice,

If computations are necessary, it is desirable to reverse

the assignments of the coefficients a@,.,, and obtain A in the

ijk
/(n, n, n), (1,1,1)/ pyramidal form., This permits shorter

summations and the use of Cyclic Entry-Exit Programming

techniques which require shorter computing time [8]. It is also
. T, D .

of interest to note that for xn =1, X /X /AX is the general

nonhomogeneous cubic in xl, xz, ey, xn 1 which thus contains

all cubic, quadractic and linear terms, and the constant term

@ n Also, the familiar trilinear form is given by XTYDAZ.
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SUMMARY
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§1

This paper describes new iterative algorithms for obtaining the
"best" rational approximation of '"fixed form" to a function of many var-
iables whose value is known at a given set of data points. These methods
are offered as alternatives to the algorithm developed for solving prob-
lem (a) in [ 1 1 and may be more effective than the previous method of
solution. In the new algorithms, auxiliary functions are optimized under
the previously given coﬁstraints. This approach makes available new in-
formation which can be used to determine bounds for e* , the optimum
solution for the original non-linear program. These bounds are, in turn,
used to compute successive values for e in the algorithms.

As in (17, problem (a) is formulated as follows:
f(;3 is a function whose value is known at n points, ;1, cens ;; s
in a multidimensional space. {Pi}?_l and {Qj}?_l are known functions

of z . Define

V?-oAiPi(z) 10
TaoB G @ )

) R(z) =

with M and N fixed and Ai and Bj unknown. The problem is that
of minimizing
Max = 2
ls k‘ nlf(zk) - R(zk)l .
The associated non-linear problem is:

Minimize ¢

subject to the constraints
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(2) £z - R(ZY| s e (k =1, ..., n)
Each constraint of (2) can be represented by the pair of inequalities

f(E’k) - R(E’k) < e
(3) . . (k =1, ..., n) .
- f(zk) + R(zk) S ¢

Assuming that R(;) does not have a pole on the set of points {;L}:-l

and that P(;) and Q(;) do not have a common factor, then Q(:%) >0
or Q(;k) < 0 foreach k . We will assume that Q(;k) >0 for all k .
.Hence Q(;g) 2¢>0, (k=1, ..., n), for some positive number c .

Now (3) becomes:

£(z)Q(z,) - P(z) 5Q(z)e

(4) - f(?k)Q(Zk) + p('z’k) < Q(E’k)e (k =1, ..., n)
- Q(z,) S -c

Substituting (1) into (4), the problem becomes:
Minimize ¢

subject to the constraints

.
- TiagPity * Z?'Oyquij - z?-oqijje =0

(5) < z?;opkiAi - E?_oyquij - E?-quije <0 (k =1, ..., n) ,
L " Tiaghgy

- -

where Ppy ™ Pi(zk) , qkj = Qj(zi) , and Y * f(zk) .
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The following notation is introduced to simplify the discussion.

(" g, (A,B,e) = ~ g p, A, + g ¥,.4, .8, - § q,.B,¢
k1P Pl o SRERA LS 1 RO S h
M N N
(6) < 844 (A,B,€) = ifopkiAi - j:‘.oyquij - jfoqkjﬁje (k = 1,2,...,n)
N
N BB = j::oqkjnj

Program (5) now becomes

(Minimize e
subject to the constraints,
) < g, (A,B,¢) S0

gn-i-k(A’B’s) <0 (k = 1,2,...,n)

'82n+k(B) < -c

If ¢ 1is assigned some positive value, the constraints of program
7 (7) become linear in the unknowns Ai and Bj’ There is no objective
function associated with the linearized constraints. Here, as in [1 ],
¢ 1is considered to be a parameter. By iterating on ¢ , the optimum
¢* can be reached as closely as desired. Upper bounds for e* as a
function of the parameter ¢ are obtained thfough solving an associated
linear program, and from these bounds a new value of ¢ 1is computed.
After solving the linear program with a particular value of ¢ , a

rational function is obtained which can be used as an approximation for

the best rational function,
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§2

By considering the following modification of program (7), an algo-
rithm for iterating on € can be constructed. The successive values of

the new objective function, X , give bounds for ¢* and the iterant ¢ .

((Minimize A
subject to the constraints
(8) < g, (A,B,e) s )

8, 1 (A:B,6) <A (k = 1,2,...,n) .

-an-Hc(B) s -c

Some properties of programs (7) and (8) will first be given. These
properties will then be used to develop the new algorithms for obtaining
the optimum solution to the original problem (5). Let A*(e¢) denote the
optimum A of program (8) and ¢* denote the optimum ¢ of program (7).

Property 1

There is a feasible solution for program (8) if and only if there
exists a vector B such that g2n+k(B) 2¢ (k=1,2,...,n) .

Proof: If there exists a vector B such that —g2n+k(B) < -c , then
there exist an A, ¢ , and A such that gk(A,B,e) <\ and

gn+k(A,B,e) £\, (k=1,2,...,n), since A, ¢ and A are unrestricted.
Hence program (8) is feasible. The necessity is obvibus.

Property 2

A*(e) 1is a strictly decreasing function of e for ¢ < e* .

Proof: Let (A*(eo), B*(eo), l*(eo)) be an optimum solution of program

(8) with ¢ = ¢ For Ae >0,

0 .
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8 (A*(eg), B¥(ey), € + de)

- gk(A*(eo)s B*(eo): eo) = gznﬂ(B*(eo)) ¢ de s l*(eo) - c + Ae, and

B (A% (ey), B*(ey), €q + be)

-,‘ 3nﬂ(A*(€o)) B*(eo)! eo) - 82“"'1((3*(60)) . Ae < )\*(eo) - C o AG
(k =1,2,...,n) .

Hence (A*(eo), B*(eo), X*(qo) - cAe) 1is a feasible solution of program

(8) with ¢ = €0 + Ae¢e . Therefore

X*(eo + Ae) s X*(eo) -c ¢ Ae .
Hence K*(eo + A¢) < X*(eo) .

Property 3
(1) A*(e) >0 if and only if e < e* .

(i1) A*(e) = O if and only if e = ¢* ,
(1i1) A*(e) is8 - = if and only if € > e* .
Proof:
(i) If e <e*, then for any A and B, gt(A,B,e) >0 for
some t, 1<t <2n . Therefore A*(¢) >0 if e < e*.

Suppose A*(e) > 0 . Then the constraints of program (7) are not
satisfied and hence ¢ < e¢* . Therefore if A*(¢) >0, € < eg¥* ,

(ii) Suppose A\*(e) = 0 ., The constraints of program (7) are satis-
fied and ¢* £ ¢ . If ¢* < ¢ then by property 2, A*(e*) >0 . This
implies by (i) that e* < ¢* , Therefore e = ¢k ,

Suppose € = e* . Then A*(e) SO . If A*(c) <O, and (A%(e) ,

B*(e) , A*(e)) is an optimum solution of program (8), then
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g, (A*(e), B*(e), € - 4¢) S0
843 (A*(e), B¥(e), e ~ 4e) <0 (k = 1,2,...,n)
~8ont+x (B*(€)) s -c

*
whenever Ac £ - 2‘—2&1

.

This implies that program (7) is feasible with € = e¢* - Ac¢ . This con-

tradicts the definition of ¢* . Therefore \*(¢) =0 .
(ii1) Suppose A*(¢) is - @, By (i) and (ii), e > e* .
Suppose ¢ > e¢x , Let (A*(e*), B¥(e*), A*(e*)) be an optimum solu-

tion of program (8) with ¢ = ¢*', By (ii), A*(e*) = 0 . Then

g (A*(c%), BR(s%), ©)
= g, (A*(e*), B¥*(c*), e*) - g, ., (B¥(e¥))(e - c*)
<0

B4y (A% (e*), B¥*(e), %)
= 8 4 (A%(e¥), Bx(e*), e*) - g, . (B¥(e¥))(e - *)
<0

= By (B¥(e®)) < - ¢

(k = 1,2,...,n) .
Let A =M% g (an(e%), BH(eR), ©), g (AK(eW), BY(eH), ) | .
For @ 21 consider (wA*(e*), oB*(e*), o)) . Then
g, (W% (e*), aB*(e*), ¢) < ak

gnﬂc('vA*(e*), aB*(e*), €) s a) (k = 1,2,...,n)

- gzm_k(aB*(e*)) S-c¢c .

Therefore M*(e¢) €a)\ . Since A <0 and & 21, A%(e) can be made

arbitrarily small., Therefore A*(¢) is - « .
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Property 4
If e < ¢* then
9) e<e*$e+x—*c(§l

and the optimum solution associated with A*(¢) yields a rational

approximation R(;) such that
Max - - A*(e)
(10) 1< k< nl f(zk) - R(zk)l S¢+ ¢ .

Proof: Let (A*(e), B*(e), A\*(e)) be an optimum solution of program

(8) for e < ¢* . Then

gy (A*(e), B*(e), e) < A*(e)
(11) B4 (A*(e), B*(e), ) s A*(e) (k = 1,2,...,n)

- By (B*(e)) S - ¢ .

M
*—0 - * -
Let Pe(z) i:foAi(e)Pi(z)

N
Q*(z) = jfoB:’f(e)Qj (z)

L Px(@)
R*(z) = € - .
© Q*(z)

Then (11) yields

- PA(z,) + 3, 0%(z) - (e + :—:Eﬁl )Q*(z,) s 0

€

- - A*(e -
PXZ ) - y.0*(Z) - (e + 2 yox(Z,) 2 0
e k ke "k Q:(zk) e’k

- Q*(z) s -c

(k =1,2,...,n)
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Therefore
- RX(z,) +y Se+m ,
SRk Q*(z,)
e k
R¥(Z,) - ¥ < e + 2¥(e) ,
ek Tk Q*(z,)
€k
and

£z - ReE )] s e + 22 ¢ L 2D - qeaya ).
k e k -
Q*(z,) c

%*
Hence we have e <egkx ¢+ A.&EZ .

At present, a better lower bound for e* than ¢ has not been
found when € < ¢* . The above approach also fails to give upper and
lower bounds for e¢* when € > e¢* , since by property 3, M\¥*(e) is

- ® in this case.

g§ 3
As was observed in the previous section, if ¢ > e¢* then program
(8) has an unbounded optimum solution. This difficulty can be avoided
by considering the dual program of program (8), since, by the Duality
Theorem, the dual is infeasible when € > ¢* . 1In this case an upper
bound for e* as a function of € can be obtained.

The dual program statement follows.

(Minimize wy

subject to the constraints,

(u, v, w) -P yQ -1} +¢ |0
(12)j P -yQ -1 0 -9 o
0 -Q 0 0 0

Q 0] = ¢,0,...,0,-1)

and

Lp 20, v20, w20.
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Here u, v, and w are unknown row vectors with n elements and

-C
-C

( n elements) .

L~ C

Normally, n is much larger than M + N + 3 and the dual program
will be solved in preference to the primal problem.
We consider the following modification of program (12), which can

be used to test the feasibility of (12).

(‘
M N
Minimize n= % My + v, +1r
im0 & jmg J
subject to the constraints,
(v,wp,v,D| [P -y@¢  1]+ef0o Q@ 0]]= (0,0,...,0,1)
=P ¥Q 1 '
0 . Q 0 0 Q o
10. * . .o
(13)< (01....0 o 0 o
_—‘_0. L L] . L] 1_‘ -0 0 o_—J
and
¥u20,v20,w20,p.20,VEO,HTZO,

where u is 1 X (M+1), v is 1 X (N+1), rt is 1 Xx 1

unknown row vector; respectively. The addition of the above identity
matrix provides a starting basis and a means for detecting whether or not
program (12) is feasible, and hence whether or not ¢ > ¢* . The follow-
ing group of properties of n* , the optimum value of = in (13), shows
‘that there is a feasible solution of program (12) if and only if n* = 0 .

Since m 20, n* is always finite.
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Property 5
Program (13) is feasible.

Proof: (u, v, w, b, V, T) = (0, 0, 0, 0, O, 1) is a feasib1e>solution
of program (13).

Property 6

n¥*(e) is finite.
Proof: In the feasible solution given in Property 5, m = 1 . Also,
m20, since w20, v=20, and T 20 . Therefore,

1 2m%(e) 20 .

Property 7

n*(c) = 0 if and only if € <S¢ . When € > ¢* and
0 <m*x(e) <1, then mn*(e) is a strictly increasing function of ¢ .
Proof: If e < e*, M\¢(c) 20 and is finite. Therefore program (12)
is feasible and hence there exists a feasible solution of program (13)
such that (u, v, T) = 0 (i.e., m*(e)=0 ) . If n¥*(e) = 0 , the above
argument is reversible and hence by Property 3, ¢ $ e¢* . Therefore
m*(e) = 0 if and only if ¢ < e* .

In order to prove the increasing property of mk(e) , let e > e¥

and consider the following dual program of program (13).

.
Maximize o
subject to the following constraints,
TP .yq  1|l+elo0 Q o] | [a] <[o]
14 -P yQ 1 0 Q O B 0
(L4aX o q 0 o o ofllle] |o
10....0 .. 1|
0100000 L] . - 1
.« . . 0o 0 O N a3y 1's
6-nn.:i 0 o o l-l#
- L - - — N




or

(14b X

.
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r

Maximize o]
subject to the constraints,
P(z) - ¥,Q(Z) + €Q(F) +p S0
-P(z) + 7,Q(z) + Q(z,) +p S0
Q(z,) s 0
A, <1

B, <1

ps1

(i = 0’1"'°’M H j - 0’1:'0"N H k = 1)2:'0')n) .

Let p*(e) denote the optimum value of p . By the Duality Theorem,

p¥*(e) = n*(e) . We now show that p*(¢) is a strictly increasing func-

tion of ¢ when e > ¢e¢* and O < p*(e¢) <1 . First observe that

pk(e) >0 1if ¢ > e¢* , This follows from the fact that program (12)

does not have a feasible solution if € > e¢* ; if program (12) is not

feagsible, m*(¢) > 0 for program (13); thus p*(e) > 0 for program

(14b). Next observe that Q(—z.k) < 0 for all k if p*(¢) >0 . For

suppose that p*(¢) >0 and Q(;k) = 0 for some k . Then

p(‘z’k) +ps0, -P(E’k) +p<0 . This implies that p €0 , and there-

fore p*(e) €0 . This contradiction proves that Q(;k) <0 for all k .

Now let asterisks designate values corresponding to an optimum solution.

Then for A4e¢ >0

P*(;k) - )’kQ*(;k) + (e + Ae)Q*(Zk) + p*(e) - AeQ*(gk) <0

-PR(Z) + ¥, Q%(Z) + (¢ + 8e)QX(Z) + p¥(e) - AeQ*(Z,) 0 .
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Therefore if we choose

Min

pe + 8e) = Min |1, "E(ox(e) - Aeqr(Z))) |

>
then (A*(e) , B*(e) , p(e + A¢)) satisfies program (14b) for e + Ac .
Therefore p*(e + A¢) 2 p(e + Ae) . Since Q*(;k) <0 for all k and
0 <p*(e) <1, p(ec + Ae) > p*(e) . Hence p*(e + Ae) > p*(e) and
thus m*(e + Ae) >n*(e) when e > e¢* and O < p*(e) <1 .

Property 8

When € > e¢*, the optimum solution of program (13) yields a ration-

al function R(;) - P(;)/Q(;) such that

Q(z,) <0

(15)
and l£G) - RGED| s e + r(e) (k = 1,2,...,n)
Q(zk)
Hence
(16) e* € ¢+ el
K Q(zk)

Proof: . - .
( PH(Z,) - y,Q*(Z) + €Q*(Z,) + p*(e) S0
17)

-P(Z) + y,Q%(7,) + €Q*(z,) + p*(e) 0

holds, where

M
- - * —b
P*(zk) i:oAiPi(zk)
- N * -
%* = ¥

and A* and B¥* are obtained from the inverse of the optimum basis of

program (13). Remembering that Q*(;k) <0 when ¢ > e* , divide (17)
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by Q*(;.’k) . Then
R* (z ) - Yie + e + £x(e) 20
Q*(z )

“R*(z,) +y +e+P—(—LZO
Tk Q*(z,)

’

where R*(z) = P*(Z)/Q*(zZ) . This yields

lf(zk) - R*(zk)l <e +2%e) )

Q*(zZ,) Q*(z,)
€e¢ + ——(—LMi
Q*(z,)
(k = 1,2,...,n) .
§ 4

.In 82 and §3,-1inear programs have been introduced whose solution
enables upper bounds for ¢* to be obtained. Using these bounds, a meth-
od for iterating on ¢ is developed. Program (13), whose solution is
always finite, is solved for a given value of ¢ ., The corresponding
value of mn*(e) indicates whether ¢ > e¢* or ¢ < e* , by property 7.
If e >e*, a better upper bound for e* tHan e is given by property
8. If e <e*, program (12) is solved and a value of A*(e) is ob-
tained by duality, and property 4 gives a bound for e* . The new value
of ¢ is then chosen as the mid-point of the interval containing e%.
When e* has been approached to within the desired precision, the opti-
mum solution of the appropriate primal or dual program gives the coeffi-
cients of the approximating rational function. 1In general, it is impos-
sible to obtain the best rational approximation exactly in a finite

number of iterations.
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Method I

(a) Set i =0 and =0 .

€0
(b) Solve program (13).

1f n*(ei) =0, goto (c) .

, 0O for i=0
1f n*(ei) >0, set 51 =

€y for 140
n*(ei)
RS T
k k

Go to (d).

(c) Solve program (12)
1f k*(ei) = 0 , halt. (The best rational approximation has
been obtained.)

1f _X*(ei) >0, set Ei = ¢

i
X*(ei)
e1+'—— for i = 0
and T, = ¢
i - A*(ei) 1
Min Lni-l’ e; +—2 , for 1 # 0.
Go to (d).
g+
(d) Set ¢ m ———= _ jincrease i by one and go to (b) .
i+l 2

The proof that the sequence {ei}:;o defined by Method I converges

to e* follows.

When w*(ei) >0 and i$# 0, we have ¢, > ¢* , and

i
n*(ei)
N, - €, = ¢, + o= - &, <g, - §
i i i Min,. - i-1 i i-1
k Az
S DS RS |
2 i-1 2 ¢

It can be shown by induction that the interval [§i , ﬂi] contains %

by property 8.
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When n*(ei) =0, X*(ei) >0 and i #0, we have ¢, €< ¢* and

1
- k*(ei)w
Mg =8y =Min [Ty, 5+ sy
SN - &
A & T O L B T B
i-1 3 2 .

It can be shown by induction that the interval [51 , ﬂi] contains e*

by properties 7 and 4. Therefore in both cases, if € $ ex ,
(‘ni_l - gi'l)
ni - §i < 3 . Since the interval [51, ﬂi] contains %
and St
€iv1 2 ’
M, = &.)
- ek S — 1 - - M0
lejyg - o*l s—5 =i (Mg =.5¢? L+

Hence {ei}:;o converges to ¢* , If the first method given in Section

IV of [1] is modified so that Aei+1 - Aei/2 in all cases, then

€ \€
0 A%*(0) \eo
1+1| s i Hence, if it d it

ping criteria for the respective methods, then the respective number of

|e* - ¢ are used as the stop-

iterations required to obtain a given accuracy will depend on the rela-
tive values of A*(0)/c and € ™ Mtxlf(gk)l .
A second method for obtaining a convergent sequence {ei}:_o is now

@®
given. A proof that {ei}

{mg cOnVerges to ¢* has not yet been obtained.

Method II

*
(a) Solve program (12) with ¢ = 0 , and set €y = A—égl . Set i=0,

(b) Solve program (13) with ¢ = € » and set

n*(ei)
*& Y ¥m oL
Kk Q(zk)

€+

(c) Increase i by one and go to (b) .
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g5
In this section a more restricted program than program (7) will be
considered. For this restricted program, both upper and lower bounds for
¢* can be obtained. Since both of these bounds are utilized in construct-
ing the sequence of values of ., the convergence to the optimum solution

may be faster for this restricted program. The program is:

(Minimize e
subject to the constraints,

gk(A,B,e) S0
(18) 84 (AsBse) S0

(k =1,2,...,n) ,
-gzn+k(8) < -¢

32n+k(B)

-

where ¢ is a real number greater than c . The fourth constraint of
program (18) restricts the class of approximating functions. Suppose
c=c, i.e., 82n+k(B) = ¢ ; then program (18) will give the best poly-
nomial approximation. Therefore in the case of program (18), the class
of approximating functions includes the set of all polynomials and is a
subset of the set of all rational functions. It will be noted however
that the fourth constraint might be added implicitly or explicitly in
practice because of the finite length of computer words. If ¢ is large
enough so that the best rational approximation is included in the set of
feasible solutions of program (18), then program (18) is the same as pro-
gram (7). If e* denotes the optimum e of program (18), then e¥* < e%,
The following program is considered, where e has a fixed positive

value.
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(s
Minimize A
subject to the constraints,

g (A;B,e) 5 A

(1934 gy (A:B,e) S A

-82n+k(B) (k = 1,2,...,n)

82n+ (B)
-

Some useful propgrties of program (19) will now be stated.

Property 9

Program (19) is feasible if and only if there exists a vector B
such that ¢ < 82n+k(B) Sc.

The proof of property 9 is similar to that of property 1.

Property 10

A*(e) 1is a strictly decreasing function of e . M\*(e) is finite
for every e .
Proof: The monotonicity of A*(e) as a function of e can be proven in
exactly the same manner as in the proof of property 2. The finiteness
of A*(e) 1is proven next. First observe that A*(0) =0 . For from

program (19),

A,B,0) < A*(0
3 ) © (k =1,2,...,n) .

8 (A1B,0) £ W*(0)
Since gk(A,B,O) = -gn+k(A,B,O) » by adding the two inequalities,
0 < A*(0) 1is obtained. Also, either
g (A,B,e) = g (A,B,0) - g, . (B) - e
2 '32n+k(B) - e or

gn-l-k(A’B’e) = gn.’_k(A’Bso) - Szn_,_k(B) c e

= -32n+k(B) :
for some k, since 0 <€ \*(0).
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Therefore

Max|
k l_gk(AsBse): Sn_'_k(A’B:e)} 2

82n+k(B) T e

2-c.e
Hence AM(e) 2-c¢c ¢+ e
Thus A*(e) 1is finite.
Property 11
(1) X*(e) >0 1if and only if e < e* .,
(ii) A*(e) = 0 if and only if e = e¥* ,
(iii) A*(e) < 0 1if and only if e > e* .,
Proof: (i) and (ii) can be proved in exactly the same manner as in the
proof of property 3. Since M*(e) 1is finite, (iii) follows directly

from (i) and (ii).

Property 12
e+3§iﬂse*se+-’i§ﬂ (M(e) s 0)
(20) €
e + Afégl <ek ge + Aziﬁl (A*(e) > 0).
(o4

Proof: Suppose e 2 e* . Then MA*(e) €0 . Program (13) can be formula-
ted as:

rkaximize he

subject to the constraints,

(21) < g, (A,B,e - be) 50

84y (AsBse = le) S0 (k = 1,2,...,n)

\ csg, . (B) S c

The first two constraints of program (21) will be rewritten as
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g, (A,Be) + g (B) - e <0
(22) k 2otk (k = 1,2,...,n)
8n+k(A’B’e) + gzn_’_k(B) + le 0

Since gzn+k(B) > ¢ 1is required, (22) yields

-Lgk(A’B ’e)/gzn‘i’k(B)] 2 le

(23) (k = 1,2,...,n)

| Bz (4B /5y 4y (B | 2 e

Let F be the set of all feasible solutions of program (18) (or(2l)) and

let Ae* be the optimum Ae . Then

dek = SUP Min | g, (4,B,e) ) gn+k(A____’B’e)ﬂ,
F ok 82n+k(B) 82n+k(8) o
_Inf Max i'gk(A’B’e) gm_k(A,B,e)-!
? : .
F k Lan-f-k(B) an-l—k(B) -
Therefore
Inf Max | Inf Max’ 7
; k Lgk(A,B,e),8n+k(A,B,e)1 < e 5 - ; K Lgk(A,B,e),gnﬁk(A,B,e)! )
c c
Hence M) o open oo MX(e)
¢ c
Since e* = e - fe*x |
e + _x*cfez Sek S e + ngeQ (\*e) <0) .
c

Next suppose e s e* , Then A*(e) 2 0 . Program (18) can be formula-
ted as:
% . ’
Minimize Ae
subject to the constraints,
(24) < g (A,B,e + e’) S0

8o (AsBse + se’) 0

§ c $g, . (B) S¢
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By a similar argument to that given above, program (24) yields

Inf Max 'gk(A,B,e) 8n+k(A,B,e) 1
F k

Ae'* =

2

gzn_’_k(B) ’ gzn+k(B) .

where Ae’¥* is the optimum 4e’ .

Therefore
Inf Max Inf Max I
F b L8 (AsBie), g, (AB,e) E b LB (AsBse), 8 (A,Be) |

— . € Ao’k < N

C [
Hence x*gel <he'k € A*(e) .

s c
Since e* = e + fe'* |,
* %* .
c

Property 13

The optimum solution associated with A%*(e) yields a rational

approximation R(;) such that

Max, . ,— - A*
k lf(zk) - R(zk)l Se + ——cﬁl if A%(e) =20

and

— - *
M EE) - RED| se + 2 je ) <o .
c

Proof: Let the asterisk designate the values of the optimum solution as

before., Then by the same argument as in property 4,

l£G) - R*E)| se + Ax(e) (k = 1,2,...,n) .
Q*(Z,)
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If e Se* , then A*(e) 20 and

- - A*x(e
- R¥ Ax(e)
l£Gz) - R*(z)| se + =
If e 2e* , then A*(e) €S0 and

£G) - BRG] se + 22D
[

8§ 6
Making use of the properties stated in 85 , algorithms for approach-
ing e* and the best approximating function can be constructed.
Method A
(a) Set i =0 and ey = 0.
(b) Solve program (18) or the dual.

If X*(ei) = 0 , then terminate.

If X*(ei) >0, set

r
Ak(e.)
= = , 1 =0
;=9 ¢
'~ X*(ei)"j
\yangi_l, e, + : R $0
(
\*(e.)
2 s, 1=20
n =< €
i K*(ei)
‘ >
Min/ T, ., e, +— » 140,
and go to (c) .
If k*(ei) <0, set
| We;) 4
§i = Mangi_l, e, +
. " }\*(ei) M
Ny =Min 7y 4, e + = ’

and go to (c) .
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(c) Set 4 - —5—3—-3 , increase i by one, and go to (b) .

Method B

(a) Set i =0 and ey = 0.

(b) Solve program (18) or the dual. Set
K*(ei)

c
(c) 1Increase i by one and go to (b) .
Method C
(a) Set i =0 and e, = 0.
(b) Solve program (18) or the dual.

\e(e.)
., i=0
e = ¢
i+l X*(ei)
e, + — , 1#0.
o]

(¢) Increase i by one and go to (b) .

Property 14
(M, - &5)
lim 0 0
= a% - a% ———————————
For Method A, 7', e,=e* and Iei+1 ex| < L , 1#0.

Proof: Since the interval [%i, ﬂi] contains e* by property 12,

ey — el =7y - € -
l*(ei) 2
*
If \*(e) 20, §i ze, + - and ﬂi < ni-l .
c v x*(ei)j
Hence ﬂi - & < “1-1 - Lei + ) < “1-1 - e

c

B My Mier T Bie

=M - L 2 il :
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K*(ei)
£
If X*(e) <0, ni < ei + - and S5 2 §i_1 .
X*(ei)
- - - E
Hence M= 8p fey v 1.1 f 8 7 S5
- £
S TS WS Tl
2 i-1 2 :
- e*
Therefore in both cases, |ei+1 e l s zi+1 , and hence
lim
- & " e* ,
Property 15
1i -
For Method B, id?w e; =e*, and e¥ - ey S (1/c - 1/c)X*(ei) .

Proof: e, = 0 £e* and k*(eo) 2 0 , Hence e = ey - By property

12, e, S e* ., It can be shown by induction on 1 , using properties 11

and 12, that x*(ei) 20 and 0 ¢ e, < e S e* for all i . Hence

+1
@ . . lim
{ei}i-o has a sequential 1limit. Thus P (ei+l-ei) = 0 and
lim
* .
= @ k*(ei) = 0 , by construction of e * Since A*(e) is a strictly
decreasing function of e , ifmm k*(ei) = 0 and A*(e*) = 0, we have
Ak(e ) A*(e )
lim i i
= a%k = < *
f- o €y T E% . Also, e, + = e.n Se* g e, + p by property

12, Hence e%* - ey S (1/c - 1/E)X*(ei) . Note that in Method B

{ei}:;o converges to e* from below.

Property 16

For Method ¢, Lim

jo € =% and e . -e* < - (l/c - l/E)X*(ei) .

Proof: ey = 0 $e* and X*(eo) 20, e, = K*(eo)/c 2 e* ,

1

By an argument similar to that for property 15, 0 < e* < e < e, for
lim :
i=1,2,... . Hence, P ek ,
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A*(e,) \(e,)
* =
Also e, + p Sek < €41 "y + - , and
- e* c - *
hence e,y - &% s (1/c - 1/e)n*(e,) .

«©
Note that in Method C, {ei}i-o converges to e* from above.
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SUMMARY : %\
207¢C 0o

This paper briefly describes the procedures employed in the appli-
cation of inverse estimation to problems in experimental design, shows
how this technique might be applied in the development of guidance
function approximations, and indicates the problem areas that must be
investigated for such an application. ;;chzgz,/\,/
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INVERSE ESTIMATION

1. Introduction

When an estimate of a (vector) function such as

x = g(y) (1.1)

is desired, the usual procedure is to select a set of sample values for
y , observe the responses X and use this data to estimate the desired
function. However, there are times when the x's , and not the y's ,
are at our disposal as independent variables. In this case, it may be

more convenient to fit the function

¥y = £(x) (1.2)

according to some criterion of "best fit'" then, using this relationship,
determine the 'best' estimate of the inverse relationship (1.1). 1In this
paper, the problem of inverse estimation is considered and some methods

presented.

2. Direct Estimation

The usual problem in response surface estimation is determining

the parameters in the model

1= £(x) (2.1)

where T is a (q X 1) wvector of dependent variables, or response
variables, and x is a (p X 1) vector of controllable independent
variables. If each element fi(g) of the vector f(x) 1is a polynomial

form,




212

£,K) = bygxg +byyxy Xy Fbyoxy X,
r-1 r-2
T Fhi% X T hia% X%
(2.2)
r-2 r-2_2
+ ... + bi,p-l,pxo xp_lxp + ...+ billx X
oo tb, 5P 4 L+, x
ipp70 “p ipp...pP
and X =1,
We can express each such element as
= ’ [r]
£, =3/ x", (2.3)
where the vector E[r? contains elements of the general form
xmoxm1 xmp
071 """ 7p (2.4)
and
m, + my + ... + mp = r, (2.5)
Then model (2.1) can be stated as
7= B’ E[“ (2.6)

and is amenable to the experimental design methods of Box and Hunter {11
and Bose and Draper [27.
Having chosen a design, i.e., observation points §j y J=1,2,...,n,

and observed the responses,

. =M. +te = £(x,) + ¢, 2.7)
where Ej is an error vector, we may write the design model as

’
¥ = Egr] B+e'

= [r]' ’
I "% "Btre,
. . . (2.8)

Z; = x[r-l B+ ¢’

- -n




213
or

Y=XB +E (2.9)

where Y is a (n X q) matrix of response variables, X is the (n X m)
design matrix (m determined by r), B is the (m X q) matrix of unknown
coefficients, and E is the (n X q) matrix of error terms. Using the
least-squares principle, B is estimated by Q » i.e., that matrix which

minimizes the trace of E’'E ., It can be shown that
ﬁ to =l s
= [X'X7"x'y . (2.10)

In statistical terms, if the error vectors &, are assumed, as usual, to

i
follow the multivariate normal frequency distribution,
lv]~L 1=l
f(e) = —o7, ©XP {- 1/2[e'v e} , (2.11)
(™

and furthermore the ¢, are assumed to be stochastically independent,

=i

then the estimate ﬁ is the maximum liklihood, minimum variance estimate.

The covariance matrix V is estimated by,

A 1 /
Ve oo {(x - xB)'(Y - xB)} . (2.12)
A

An element vk ©°f V measures the simultaneous '"lack of fit" of ¥

and Vi -
For any point x , not necessarily a design point, the response vec-

tor 1 1is estimated by

Naspm rglr] (2.13)

and the covariance matrix for this estimate is

{;Eﬂl[x’x]'lx[ﬂ} v (2.14)
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3. The Problem of Inverse Estimation

There are times when we want to estimate not the function ex-

pressed in (2.1), but the inverse functionm,

x=g( , (3.1)

where, again, the x's are the controllable variables and the 1's are
the response variables. For example, consider the problem of calibrating
an hourglass., Let to be the elapsed time measured by the hourglass and

t be the true elapsed time as measured by some presumably unerring device.

An estimate of the function

£ = g(ty) (3.2)

igs desired. The logical way to approach this problem would be to choose
times tl’ tys eees tn and at each time, ti , observe the hourglass
time (toi + ei) and then use this data to estimate g(to) . This is
an inverse estimation problem. Our data reflects a model of type (2.1)
where ty is the response variable and t is the chosen independent
variable, yet we want to estimate a function of type (3.2).

Williams [31 [4] discusses the problem of inverse estimation in
the simple linear case and considers the problem of estimating the quan-
tities of two sugars, glucose and galactose, in a solution by observing
the optical density of the solution to light of two different wavelengths.
An estimating function is determined by using solutions of known sugar
content and observing the associated optical densities, the response var-
iables thus being the optical densities and the controllable variables
the quantitative sugar contents.

In the flat earth problem discussed in [57 and the various progress

reports [6], the problem is to determine an equation for estimating the
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optimum trajectory to continue, knowing the instantaneous conditions of
position, velocity, propellant flowrate, and (F/m). The equation is to
be determined from observations of the instantaneous conditions along

chosen trajectories known to be optimum. Characterizing a trajectory by
the steering function x(co, s cz) and the cut-off time tc , a model

for the observed data is
W= £(u) ' (3.3)

where w is the vector of observed conditions (x + € ¥ + ej, x+e, ,

y + e§ s Mt eu » F/m + eF/m) , the e's perhaps in-flight measure-
ment errors, and u 1is the vector of controllable variables (co, €15 Cys
and tc’ the time of cut-off). Since the steering angle x is a direct
function [57] of 'co, Cqs and Cys it may be feasible to include x in
the above model as a concomittant variable, creating a model analagous to

the analysis of covariance model familiar to experiment analysts,

From the model (3.3), we want to estimate a working relationship

u=g(w) (3.4)

That is, given measurements of the instantaneous conditions, we want to
determine which optimum trajectory we are on and adjust the steering and
cut-off mechanisms accordingly. One proposed method for doing this is to
generate bundles of(optimum trajectories, at points along these trajectories
obtain values for w ,and then fit the model (3.4) by, say, a least squares
procedure. Here, w becomes the vector of independent variables and u
the vector of response variables when, in fact, their true roles are Just |
the opposite.

Since the vector w 1is not controllable, the choice of trajectories
and observation points on these trajectories becomes a matter of personal

judgment rather than a matter of mathematical choice. In the direct
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estimation procedure discussed in the previous section one generally
chooses design points such that the matrix in (2.10) is easily inverted,
the estimates in (2.10) are relatively free from interaction and corre-
lation with one another, and the covariance matrix in (2.14) satisfies
some specified criterion. However, if the variables considered indepen-
dent are not actually controllable, we are not free to choose points that
satisfy these criteria.

Therefore, the question arises as to whether or not it may be better
to fit the model (3.3), where the vector u is controllable, by direct

estimation and then solve (3.4) by the inverse estimation techniques of

the next section.

4, Determining the Estimates

Given the linear model

1-11+e'3'§+€

4.1)

A A
we can determine the estimates B and V from observed data. The esti-

mated liklihood, then, is

Ar-1

Y {-1/2[e'¥ e} (4.2)
2m)

where e =y - Q'g . If we wish to estimate x from an observation of

y , Williams (37 suggests that a reasonable criterion would be to choose
the x that has minimum estimated variance, or that maximizes the esti-
mated likelihood. From (4.2), we want to choose the x that minimizes

the quadratic form

Q= - 2BVl - B . %.3)

Differentiating with respect to x , we get,
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M-1A, A M-1
BV B'x - BV y=0 |, (4.4)

Henceforth, we shall disregard the carats and it will be understood that
B, V, and x refer to the estimated quantities.
Solving equation (4.4) we find that

x= [BV-IB"}*BV-lx , (4.5)
where the conditional inverse [BV-IB'T* is defined by

(v la' 1By 1B (Bv 8" 1 = [(Bv 137 . (4.6)
If [BV-IBT is non-singular, then x is uniquely determined and

[BV’IB'T_* - [BV’IB'Tl . (4.7)

Note that if y is (p X1) and x is (p X 1) , then B is a square

matrix, and, further, if B 1is non-singular, (4.5) reduces to

x = B"lvs‘lnv'ly_ = B"lz (4.8)
Writing (4.5) as
X =Gy (4.9)
we see the estimated variance of x 1is
V(x) = GV(y)G' (4.10)

and V(y) can be determined from (2.14).

If the model is extended to include terms of higher order, i.e.,

Yy, =S b..x, +%%b, xx +TNb,. . XXX +...+e,
i j ij™j ik ijk Jxk jk1 ijkl jxk 1 i
4.11
or x'B'§[r1+g ( )

then the minimum of the quadratic form is not as explicitly determined
since the equations 3Q/3x will include non-linear terms in the x's .

There is, however, a relatively simple iterative scheme to determine the

minimum.
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We can linearize (4.11) by redefining the variables as

2, = X

P P (4.12)

(4.11) becomes,

y=B'z+e, (4.13)

and the problem now is to minimize,

Q= (g - z'B)V i(y - B'z), (4.14)

subject to the constraints,

. . (4.15)

Using the method of Lagrange multipliers, we derive the set of equations,

Apxp Cpxs Opxs zZ u, 4, Z 5 y)
4
sXp DsXs Is)(s 2l = 4, @ (4.16)
OsXp IsXs 0sxs A 03(£P)
-1 A C
where the matrix BV "B’ has been partitioned into ¢’ ol ¢ 0 is

a matrix of zeros, I is the identity matrix, gp is the vector of




219

primary variables Xis Xyy ooy xp, Zg is the vector of secondary var-
iables, i.e., the higher-order'terms, A is the vector of Lagrange mul-

tipliers, u, is bilinear in ) and z, but linear in y , u, is

=2
linear in y , and 4y is the right-hand side of (4.15). Equations

(4.16) can be solved iteratively by the following'procedure:

7 [, ~1 -1 W ]
Ep’k Apo o‘st A CpxsT 21,1('1
zs,k = 0sXp ?sxs IsXs E2,k-1
r,0-1 =1
_;k ] C'hgxp Taxg CA CD ¥3,k-1
— — — —_ (4.17)
u
1.k 4 Gy Zp ke X
Bl * | %k1®
I3k u3(z, 1)
Since Y is invariant with respect to k and Z i is identically
] y

4q, (4.17) can be reduced to the set of m equations

-1 -1
2o = A u Qg 2 g X)) - A TCua(z) )
(4.18)

! !
Ak -C'A ul(Ak-l’ Ep,k-l’ y) + “2(1) + {¢c’'A "¢ - D1u3(5p,k-1)

5. Discussion

If the inverse estimation procedure were used in the flat earth prob-
lem, we would first determine the relationship (3.3) using experimental
design techniques with, say, a Runge-Kutta method to generate the response
variables from the controllable variables Cgs C10 Sp» and tc . Then,
in applying our model, we would measure the response variables x, vy, X,
¥, &, (F/m) in flight and, using the procedure of (4.18), estimate the
values of oo cl,'cz, and t, that would have given us this observed

response.
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On the surface this approach seems to be a logical attack on the
problem. However, there are several critical questions concerning equa-
tions (4.18) that must be explored. The most obvious ones concern compu-
ting time, computer storage requirements, and the variance of the estimates
obtained. At this point these questions have not been explored in detail
but a first glance at the equations involved yields a first approximation
answer of too long, too much, and too great for in-flight calculations
by an on-board computer. Therefore, the difficulties in applying the
results of this inverse estimation procedure might nullify the simplifi-
cations obtained in the direct estimation problem by the application of

controllable experimental design.’
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SUMMARY
no76! A

A technique for obtaining a function which yields an error, in
the sense of least squares, that is less than a specified tolerance

is developed. 4 Y S
I. INTRODUCTION

In [l] , & recursion process was developed for obtaining the
coefficlents Ay, Ay, ..o 5 Ay of the function Aoqpo(B) + Alcpl(a) +

- --+WB) such that

Eez {Xe) - T A )}
g0 T g WP

is minimum, This scheme yields the coefficients of the approximat-
ing function without having to solve the normal equations, Of
course, the least squares procedure minimizes the sum of the
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squared errors, yet we have no assurance of the relative size of
this error. In this psper, we will develop a process for choosing
the approximating function in such a fashion that the error will
not exceed a given tolerance,

Before doing this, let us examine more closely the error E

N
incurred by using the function % Adcp J(,t'i‘) as an approximating
J=0

function. If the vectors '50, -q;l’ cee :”N’ N < n, are used to
obtain the collection 'é'o, 'él, cer s 'e'N of orthonormsl vectors as

in [13 » then the error E can be written as follows:

n o, N 2
E= 2 XBy) - = Ayoy(By) | = NI X - Agog = Ay -

. 2 _ N _ 4 N
" x “ - xl Ji (xl eJ) eJ J- l_ x’ JEO (x) ed) ed ] +
N _ _ .2 _2 N _ _ 2
I ®SpE I = 1%l - = &%) .
J=0 J=0

From this representation of E, we are able to observe the

folloving:
2
1) || ¥ || is an upper bound for E.
2
2) A sum of any k of the N + 1 terms (T,EJ) ,0<k<N+1,

]
will yield an error E° > E,
3) If ;N+1 is any other non-zero vector orthogonal to each
2

- 2 N1
Of €y, €, «.u , €y, then N - ,jEO (X, ed) < E.
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II. SELECTION OF THE FUNCTION

2 N 2
After evaluating | X || - = (X, 'éJ) , we may find that
3=0

this value still exceeds a given error tolerance 6. Then ve

wish to find -‘Eml such that

el N _ 2 _ 2
I - 2 ®E) - @, st

i.e,, find ;"-’N-e-l such that

(X, ¢ )2 | X 112 : (X, )2
n+l’ = 3=0 ej

where €l is the vector associated with Pivel that is orthogonal

to .;0’ .e-l, LR N ] , -e-N.

Suppose we let

75 N (Ao’ll""’)‘n)'
Then

Z°N+1 = aN+l - (‘-PN+1’ EO) EO Toeee T (GN+1’ ;N) EN

n
= (Ao,)\l)ooo,kn) - (iEO )\i e01) eo Lo 'Y

n
~(z 2 e)®
A B i Al
ifr -e-J = (eJO’ eJl’ ece e,jn)’ J = o,l,o'.’No

Therefore,
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n n
()\o,kl,oan,ln) - ( E )\1 eOi) eo - see ™ (ii )\1 eNi) eN

- 1=0

1 "Tn 2 ( n 2 ( n )2 V2 ’
18 A - Tz A, € ) - oee = T A ’
A B A S L

a-n.d if Y = (to’tl’ooo’tn)’ then

n n - - n — - 2
” [150 Ay by - (2 Ay e )(®s Tg) = eee = (2 4 ggy)(Fs &) ] .

- - 1=0

(x, eN+1) =n 2 n 2 n 2
2 l "'(8 )\ e ) - e0e¢ ™ ( 2 k )
oo T ot oo 4 N

Thus, to have
- 2 2 N _ _
(X, o) 21X -Eo(X,e

we must have

n n n -2
[120 M oBy - (15_'_‘0 Ay eog) Xy &) = eee - (1§o Mooy )® ) |2

|:n 2 (n )2 (n )2.][“2“2 N(___) 1
A - Ele = see * er -3 x’ -5,
R B LA ot N 120 €3

or

n
[1;-:0 A, {8y - (X, Zo) €y = vt " (%, EN) eyy) ]2?_

[n 2 n )2 n )2 - “ Y‘Iz N - - )2
2 k - X . s00 ™ l - X, -6
oM (120 1 %01 (120 1 ®N4 :H. ‘ JEO( e, ]
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2 [y (5 - (% 5) ®, %) &)
T {A t, = (X, e ) e, = oeo = (X,
ol M o’ ®o1 N %N
n - -— - -
+ Zlikilokk(ti-(x, eo)eoj_-...-(i', eN) eNi}(tk-(x, eo) € "
o1
n ~ 2 2 2 n
”'(X’QN)eNk] ]>i§0 )‘i -7\1 em-P)\ikgokkemeOk-...
i
2 2 n
RS ¢ aikgokkem'*m:}' XN -z (X, e)) -5],
11
or
n 2 - _ 2 _ .2
;Eo[li{{ti-()(,eo)em-...-(X,eN)eNi] SCIE -
2T -8 + ey (NN -2 (%,3) -0
Z x’ -6 x 'Z x, '6 s 0 @
120 ed + ey % e:j + +
2 o2 N 2 Y 2 L
ey (X -Jzo(x,ej) -9 ) o+ xi{akzo}k{ti-(x,eo) €0t
o1

“ vee = (X, EN) eNi] {tk - (%, -e'o) Cox =t - X, 'EN) eNk) +

I_2 N __2 n n -
2 (lhxfl -Jzo(x,ej) - 8 {k%"kemeox:*"°+k§o"k°mem:}}J

oo k>i

> o,

If we let




2 2
A= {06, = (R, 50 gy = e - (K, 5 ) - (X -

2 2 N
-2

- -...2 2 N - -
+e01{||xn (x,ed)-6}+---+eui{||f"-zo(x,e

J=0

8) }: and

a0 2 3 y x s
By =2 2 M (by = (X5 e0) gy = vov = (X, B) ) (8 - (%, ) ey
11

- - —- 2 N ___2 n
e E R ) ¢ LIEL =8 65 -0 oy 0 0 *
1

n
ces +k‘:."o Ak Ny eNk) } ’

1
n 2
we can write this inequality as % (Al )\1 + By J\i) >0, and
1=0

this inequelity 1is satisfied if

2

M A, + B\ =0,

11

for 1 = 0,1,...,n. Notice that these conditions are much stronger
than are necessary and we will need to examine scme cases theat

might arise,

Case 1: IfBi;‘O,foralli,O§_1<n,

choose Ai = -A-i- .

Case 2: If Ai >0 and Bi = 0, for some i,

0 <1 <n, choose xi =1,
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Case 3: If A:l <0 a.ndla1 = 0, for some 1,

0 < 1 <n, choose >‘i satisfying

( 2
B, .)
i-1
2 > LAy ) A
p
2 2
Then (B, ,) - La;_ A Ay >0, and we ere

assured of a solution A 1.1 to the equation

2 2
1-1+B>‘ + A, A, = 0O,

Ajq A 1e1 Ma1 A M

1-1
Notice that the left side of this equation

is just the sum of the ith and (i-1)st terms

n 2
of the sum 120 (A1 Ay + 3B ki). Since A, <0,

no difficulty is encountered in choosing A 1

to safisfy
2
(3, .)
1-1
2 > by ) A
i

if Ai-l >0, If Ai-l < 0, then we must note

that B, is & function of A and we must be

i-1 1’
careful in the choice of A 1
2
(3,.;)
But —— has & minimm value at its only
A

i

criticel point, hence we can choose li such
2

1-2) > A, . A

}\2 = 4.1 i

i

(B
that
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SUMMARY
}o‘lé yx /AT

A method is proposed for the least squares fitting of a polynomial to
data with applications to fitting solutions of the guidance equations. This
method depends on restricting the class of polynomials (balanced polynomials)

as well as on solving the guidance equations at certain sets of points.

A
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I. INTRODUCTION

The problem with which we are concerned is that of approximating a real
valued function of several real variables given a collection of points in the
domain of the function and the corresponding values of the function at these
points. Furthermore, we are considering a polynomial approximation of the
function and are assuming the least squares criterion for the best approxima-
tion. Theoretically, then, our problem is easy -- simply use the polynomial
of the chosen degree with the least squares estimates of the coefficients.
However, from the practical point of view the problem is not so easy. Actually
finding the least squares coefficients may be an almost impossible task when
one is fitting a polynomial of several variables and modest degree. The inver-
sion of the coefficient matrix of the normal equations is the usual problem.

The general methods for finding the least squares coefficients can be
divided into two major categories--those which apply for arbitrarily chosen
data points and those which depend on some special arrangement or design of
the data points. The methods thus far proposed for arbitrarily chosen data
points do not seem substantially to reduce the calculational difficulties from
those of inverting the coefficient matrix of the normal equations. However, if
one is willing to allow any apriori design of the data points, it is possible
to have a design which will yield an easily invertable coefficient matrix.
There is, of course, a middle ground between that of no restriction on the
arrangement of data points (design) and that of the very severe restrictions
needed to produce an easily invertable coefficient matrix. It is in this area
of moderate restrictions on the design of the data points that we have had some
success. We shall call our design of the data points a rectangular design. 1In

the statistical literature this design is called a factorial design.
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By using a rectangular design and a special form of polynomial called a
balanced polynomial we have been able to calculate the least squares coefficients
with a considerable reduction in calculational difficulty in the sense that
several lower order matrices are easier to invert than one of higher order.

The process by which we calculate the least squares coefficients will be called

the step procedure.
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II. RECTANGUIAR DESIGNS

Suppose the domain of the function to be approximated is a subset of

(1)

g-dimensional Buclidian space. Let (x y ees x(ﬂ)) be a typical point

and define

I € R . }
Di ’{ xti : ti =1 ..., Ti s xti % xsi if ti f sS4 .

Then the tartesian product

will be a subset of w-dimensional Euclidian space. We define a rectangular

design to be any such D . Note that the Ti‘s need not be equal and the

xﬁl) need not be eyually spaced.
i

Step Procedure: The step procedure is most easily explained by an

example. Let us consider a function of two variables, f , and consider an
approximation of f by means of a second degree polynomial. Denoting

f(u,v) by y we have

~ 2 2
y = (all +a,u+au ) o+ (glz + azzu)v + 8,V
Suppose the data is in a rectangular design, say
D =D x D,, D = (ul y eee un) , D, = (vl s eee vm)

then we may use the step procedure to find estimates, not necessarily the
best, of the a's . The procedure is as follows:

1. Hold u fixed at say us and define bil , b s b, by

iz is
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R = a + a_u, + a_ u/’
ii 11 2171 311
b. = a + a_ u,
iz 12 221
big = 813
and consider
2
Y.. = Db, + b, v, + b, v,
ij i1 iz ' J iz J
2. For each fixed i find the least squares estimates of b, , b._, b,
i1 iz is
3. Using these estimates as if they were observed values of
2 . .
+ a + a - + a . a respectively find the least squa
8., 21%4 2291 %1z 221 % %aia P v 4 quares

estimates of a,, , @85, , 855 5 815 5 855 and &, .

Note that instead of a 6 x 6 matrix inversion as in the case of finding
direct least squares estimates of the a's , we were only required to invert
several smaller matrices of maximum size 3 x 3 . We could also have written

the polynomial approximation as

+a, . v+a _vd) + 2

y = (all 12 13 (321 * a22v)u + 85,0

31

and used the procedure Jjust as well. The estimates of the a's in this case
would, in general, be different from those found above.

It is not difficult to show that in a general nth degree polynomial of
® variables the estimate of the coefficient of the highest power of the variable
which appears in the first step of the step procedure is indeed the least squares
estimate. We shall denote this result as theorem 1 . In general the estimates

of the other coefficients do not have this property.




239

ITI. BALANCED POLYNOMIAIS

As motivation for considering balanced polynomials, think of expanding a

x(l), () (n)

function of =x variables, see 5 X » in a power series in x and

approximate this by the first Ln + 1 terms; i.e., a polynomial in x(n) of

degree Ln . Now expand the coefficients of this polynomial in power series

in ™) ang approximate these series by their first L  + 1 terms.

Continue this process until all the variables have been used. Note this yields

(1) (n)

a polynomial in x'/, ... 4y x of degree L1L2 “e Lﬁ which is not the

general polynomial of this degree. For example, if n =2, Ll = L2 = 2

we have the balanced polynomial

2

(a.. +a_u+a lu2) + (a._+a_u+a 2uz)v + (a u®)ve .

+ a + a
11 21 3 12 22 3 23u

13 33

This polynomial is a fourth degree polynomiel in u, v but the u4, u3, v4, vo s
uav, vu  terms are missing. Notice, however, that all the terms of the general
second degree polynomial are present. So if higher degree terms are not ob jec-

tionable, it would seem that if a general polynomial in s variables of degree L

provides a reasonable approximation, a balanced polynomial in ; variables with

min Lj > L would give an even better approximation.
J=1,...,x%

In general a polynomial of the form
L+1 L +1

1 7t X . £l
... a xgl) . xg“) s x(l) = (x(l)) *

1 1 g 1 zi

will be called a baianced polynomial. We show in theorem 2 that the step pro-
cedure applied to a balanced polynomial over a rectangular design will yield

the least squares estimates of all the coefficients.
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IV. PROPERTIES OF RECTANGULAR DESIGN AND BAIANCED POLYNOMTALS

Consider the general dth degree polynomial in the n variables

x(l), ooy x(“) which we shall write as
(1) 8., Lo ta o .lxgl) + «.. + (terms in x(l), ey x(“) of degree
n),\4
<a)+ al...ld+l(x( )

We shall call x(ﬂ) the leading variable. Clearly this general polynomial may

be written with any x(l) as the leading variable but in what follows we shall

be concerned with the specific form of the polynomial in (1) and thus the leading

(x)

variable will be x . If we use such a polynomial to approximate a real

x(l), , o) .

valued function f of =« variables ; we have the following

e

result.

THEOREM 1: In the case of a generzal dth degree polynomial in n variables
the step procedure over a rectangular design yields the same estimate for the
coefficient of the dth power of the leading variable as the least squares

procedure over the same design.

Before presenting a proof of theorem 1 we shall exhibit an example which
shows that theorem 1 is best possible in the sense that in general the step
procedure estimates and the least squares estimates of the other coefficients
do not agree. In particular this will justify the use of the specific form
of (1) and the "leading variable" terminology.

Consider the general second degree polynomial in two variables

2 S 2
a + a u + a us + (a + a_u)v
11 21 31 ( 12 22 ) to8aY
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as an approximation of a real valued function f of two real variables u,v .

Let Yiy = f(ui , vJ.) and thus suppose the expected value of Yij given by

Ely..) = a + a_u, + a u® + (a._ + a_u)v, + a v2
(yiJ) 11 211 3171 ( 12 22 1) J 13
or in vector-matrix notation
E(y) = Xa
where
= = 2 2
I = [V X 1 1 Y WyWv, v, v
2 2
Y2 1 1 4 WV Yy Vg
2 2
Y13 1 vy v wvy V3 V3
2 2
Y21 1 u, uj uv, v, v
2 2
. Yon . 1l u, uz UgVy, Vo V5
2 : 2
yz:3 1 u, u;  uyv, Vg Vs
2 2
Yaq 1 u, ug usv, v, vy
2 ’ 2
Va2 Louy, vy wv, v, v,
,2 2
Yaa Lou, uy uyv, vy v
a = [a,, for i,j = 1, 2, 3 .
85
a
31
a
12
a
22
83,

The least squares estimates of the coefficients may be found by solving the

normal equations [1]

X'Xa = X'y .
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If in our example we consider the rectangular design

the normal equations become

O o O W0

15

-2

O O O O

-2
10

o -3
-2 0
0 -2
10 0
0 15
0 -21

15
0
10
0
-21
51

D

1

» © m O © @O

= {-1, 0, 1

11 \ 1
\ -1

21

31 =

12

22 -2

13 b

solution of this system is

1
5k

1
28

1
5k

1
28

('§'le+

Ly
J

J

(482y;, +302y,,+212y,,
1 1 1
(-5§ylj+ 5§y3j+ 2y, -

('1825’11'18;5[12 -8 2y,
1 1 1

+6y11'5y13

%t (-3 Z Yip = 9 Z Vig * 12 Z Yig )
i i

é% ( 5 Z yil
i

1

-9 2 Yip * 62y, )

1

i 13

J

-1

O O O ¢+

2

1l 1

-1. O

1 0

-1 0

1 -2

1 k4

- 18 Z Yij
J

- 2y

Yy
+27T Ly, + 2T L,y )

-6y

+ 3 Yag

O O O O O

H . O O O ¥

J
)

-2

OO O O + + ¥

e =

Now consider the same design and use the step procedure to estimate the coefficients.

Thus, write the polynomial as

b
1

+ bv + b ve
2 3
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where
b = a +a u + a ul
1 11 21 31
b = a + 3
2 12 22u
b = a
3 13

For fixed i find the least squares estimates of b, =a_ _+a_u, + a__uZ B
1i 11 211 31 1

b . =a + a_u, b, =a . We obtain the normal equati i a :
2i 12 o271 ? ai 13 o (e} quations in v lone

(V' V)b, = V'y,

2
1 vy Vg bli Vi1
L R CEC TR el £ IR SO £
1 va va bsi yia
The solution of this system is
Py T Vip
b = - 1 - l + g
21 [ yil 2 Yiz 3 yia
-1 1 1 .
by = BV "5¥iat3Vie ¢+ (1=1,23)

The second step is to treat the u's as observations on the polynomials

2 . ;
a _ +a + a a_. +a a and find the leas ares esti-
i1 21" art  ’ 21 224 13 t squ

mates of the a's . For b, the normal equations are

(uyu,)a, = Uj b

1-1
where
2
/l bt T 811 b1y
7 = 2 = =
Y1 1 u, uzj, & 821 2 b2 .
1 u u? a
3 3 31 13
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The solution of this system is

811 % Ppp - Y2
1 1
8, T "3 (bn * bls) T2 (y12 + yaz)
1 1
85, % 3 (bn + bla) b, =3 (ylz ysz) Yoo
In the case of b2 the normal equations are
\] - 1]
(Uz Uz) g, = U; E2 ’
where
1
1 8.12 21
Uz = |1 2 P & = ’ b, = 22 .
a
1 u, 22 bog

The solution of" this system is

3
1 _ A
812 % 3 Ebli - SH(-3Zyi_1’-272yi2+362yis)

[0
"
N =
—~~
o
]
o
S
0

- by )

+ Ll-y Y 12 13

a3 + 3y

22 12 (- Ia1 ~ 5}’32 11

Note at this point that none of the step procedure estimates agrees with the
least squares estimate.

Finally consider bs and the normal equations

1 - 1
(Us Us) s = Uy b
where
1 b31
U:3 = B ag = alS s b, = b32
1 b
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so that a
b

3
_ J= 1 v
8, = __?;__ =X (32 Vi, - 9 2 Vip + 6 2 Yia )

which does agree.with the least squares estimate of al3

Thus, we see that the step procedure for estimating the coefficients of a
general polynomial over a rectangular design is not equivalent to least squares
estimation over the same design. However, in theorem 2 we shall give condi-
tions sufficient for the equivalence of the two procedures. We now present a
proof of theorem 1 in the case d =2, x =2 . (For the general proof see
Appendix B.)

Consider the rectangular design

D =D x D, "D1={u1’u2’ua} ;D2={vl,v2,v3}

and the pdlynomial

(%) (a,, +a_u+a_ud) + ( 2

+ a v + a
11 21 31 22u) v

a
12 13

written in preparation for the first step of the step procedure as

2 .
bl + b2v + b3V
= 2 = =
where bl = a,, +a,u+a, u, b, = a,,+au, b3 = a,, . Let
Vij = f(uivj) where f is the function to be approximated by the polynomial (*)

If we can demonstrate that the step procedure estimate of 8,5, = ba is a
linear combination of the components of X’z s using the notation of the example,
and show that such an estimate is unbiased; then the step procedure estimate is

the least squares estimate. (See Appendix A)
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Since the first step of the step procedure is a least squares estimation,

the step procedure estimate of b, , b_ , 1s unbiased. Furthermore,

3
" Zy,
bli J "1d
-1
b, | = (V) Z‘.vJyJ
b
3i Z v
P13
that is,' b3i is a linear combination of
Zy.. L V.Y, Z
L vy o Ty 0§y

for each i . Since bsi = ala for‘each i +the second step of the step proce-

dure gives

A

a
RIS
3

as *the step procedure estimate of a Clearly this is unbiased if bsi is

3 °

and this estimate is a linear combination of

2 , Vo 2y
§j%j %%%ﬁa %?%y

dowever, the components of X'y are
P

ZZvy.. , Zu, Fig 2 ; ulyl

i Z u. Z \ y
2 ) '
ig J ij 13 ij

lelJ Zvy

2
J ij ij ij
€0 that the step procedure estimate of 8,4 is a linear combination of these

components, specifically of the first, fifth and sixth. Thus, the proof is

complete for this special case.
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If we are willing to restrict ourselves to balanced polynomials, we may

use the following result.

THEOREM 2: The step procedure when applied to a balanced polynomial
approximation cf a real function of several real variables over a rectangular

design will yield the least squares estimates of the coefficients.

Consider the special case of a balanced polynomial in two variables each

with maximum degree 2 ,

2
(a. + a,u+a u ) o+ (alz +a,

2 2 2
11 u+ a8 u ) v o+ (a13 +a,u+a u ) vE,

2 23

as an approximation of a real function f of two real variables u,v over the

rectangular design

Let y = f(u ,v,) 5 t, =123 ; t, =1,2, 3
tltz tl t2

First we shall consider the least squares criterion for estimates of the a's

and generate the normal equations ; then we shall show that the step procedure
estimates of the a's satisfy the normal equations and are, therefore, least

squares estimates.

Define S by

= - =1 2,245t
tl 1 t2- za-l 21 1 1%2 V1
ahd calculate Baé——— S . Setting this partial derivative equal to zero,
a,a
1%2

we arrive at the equation
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< 3 Q-1 & -1 3 3 £.-1 Q. -1 £.-1 O -1

1 2 1 1 2 2
z Z‘,yt,c,c v, = Z Zazz{ z ut u v v } .
t=1t-1 2 =1 £,=1 172 t—1t-11 1 2 2

Now employing the properties of the rectangular design we have

3 3 Q-1 G, -1 3 3 a £,-1 ;-1 3 £o-1 Q-1 *
(1) X 2 Ve g Uy Vg = X 2 a8, , (Z uouy Y & Ve Vv .
t,=1 t=1 172 1 2 £,=1 £,=1 172~ ;=1 "1 1 t=1 "2 2
We shall define the matrices U,V as follows
2 2
u, uj 1 v, 1
= 2 = 2
v = 2 Yz v o= 2 Ve
2 2
u, ug 1 Vg a
3 £,-1 Q-1
Then clearly L uooou is in the £.,Q;, position of the matrix u'u
tlzl 1 1
3 ,22-1 a
Similarly for v v . Thus define
t t
t =1 2 2
2
3 L -1 al-l
U = X u u
£,9 t =1 ty t,
b
3 2.-1
A = v v
220 t =1 b2 ta
2
and (4) becomes
Gy ¥ % AR
5) Yy u v = A U, v
s =1t =1 Yty by ts £=1 g =1 Lilp 210y L0

Equation (5) is a typical equation from the set of normal equations.

We shall now use the step procedure to estimate 'a coefficient, As s
172

In order to facilitate the writing down of this estimate, we shall have
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need of the following notation. Let

£y8y

-1
(v™7) = (u'v) L= 1,23 s = 1,23
L2852
-1
(v ) = (v'v) £, = 1,2, 3 s, = 1,2, 3
£ -1 £5-1
and note u, is in the El,rl position of U' and similarly for V.
1 2

The first step of the step procedure for finding an estimate of. As s
‘ 1°2
is

3 3 £os5 £5-1
= 2 '{ L v v yt
r 1T2

=1 =] 2
r2 22

where Itl = (

step is then

yfll , ytl2 , yfla ) The second and in this case final

A . = (U'U) lUv a()
5152 2
3 3 2.s 2. -1
= % { LU t u . } a(l)
rl=l gl=1 T T8z
3 3 £2.s, £.-1 3 3 £_s 4_-1
1”1 ‘1
= 2 LU u, z X Vv 22 vr2 Yo p
r,=1 Zl=l 1 r1=1 22=1 2 12

Using the fact that we have a balanced polynomial over a rectangular design

we may write
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If we substitute A for AE 2 in equation (5), the right hand side
5,8, 2e
becomes
3 3
z L A U v =
;51 S,=1 5152 $10 Sa@z

3 3 3 3 £.-1 L _=-1 3 L.s 3 £2_s
z zyrr{z Ll v,o (Zuty )(Zv“vsa)]}.

rl=1 r2=1 1”2 £1=1 122=1 rl r2 sl=1 Slal 52'=1 22
S zlsl
However L U Uﬁ o = 5£ a = 0 or 1 depending on whether
s, =1 11 11
_ S is,
£, #a, or £, =a . Similarly, LV V., = 8, o - Sotmatuwe
S,=1 272 272
have the right hand side of (5) equal to
3 3 % % £,-1r £,-1
2 )y Y u v o) o) =
r.r r T £.a, L. Q&
= = 1 = = 1 1~
r,=1r_=1 2 zl 1 Ez 1 2 272
3 3 Q-1 q_-1
1 2
z Ly u v
rr._r r
ri=1 r =1 1"z 1 2
which is the left hand side of equation (5) . Thus As s is a solution of
172

the normal equations and the proof of theorem 2 is complete for this special

case.
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V. IMPLICATIONS AND EXTENSIONS

Comparisori to ANOVA

The analysis of variance model for a factorial design which includes all
of the interaction terms is equivalent to a balanced polynomial model in which
the degree of the polynomial in a given variable is one less than the number
of levels of the factor corresponding to that variable. In the analysis of
variance model we break up the degrees of freedom for a factor into each of
the different levels and in a polynomial model we use the constant, linear,
and quadratic parts. If we have a factor at levels a, b, and ¢ then we may

think of these three degrees of freedom as corresponding to the space spanned

by
1 0 O
0 0 .
0 O

1 a a2
1 b b2 .
1 o] c2

The first is the analysis of variance model and the second is the polynomial
model.

A factorial design in which all interactions above order d are assumed
to be zero is equivalent to a polynomial model in which cross products involving

more than d4d + 1 factor are omitted.
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Relaxation of Balanced Polynomial Conditions

We have seen in theorem 1 that the rectangular design enables us to use
the very easy step procedure to find the least squares estimate of the coeffi-
cients of the highest power of each variable in a model which is the general
polynomial of degree d . In theorem 2 we see that the rectangular design
enables us to use the step procedure to calculate the least squares estimates
of all of the coefficients of a model which is a balanced polynomial. We may
now ask; is it necessary to have a balanced polynomial to get all of the coef-
ficients by the step procedure? Is it possible to have other polynomial models
in which the step procedure gives the least squares estimates of some terms
other than Jjust the highest power?

To gain some insight into these questions we shall consider as an example
the two factor model

)

Ey,. = P (ui , v

ij J

where P is a polynomial in u and v and the design is a rectangular design
in which u has L4 values and v has 3
Now we apply the step procedure with leading variable Vv . We write

P (u, v) as a polynomial in v .

= 2
E Vi Po(ui) + ijl(ui) + vj?e(ui)
2
1 Vi vl yil
= 2
Let v =11 > Vs . Let Y = | Yiz .
2
1 v, V3 Y.

13
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Then the estimates of PO s Pl , .and P2 are given by

P (u,)
2 T (-1.T
P (ui) .= (viv) v Y
P, (ui)
ry.,.
. 3713
In particular Pz (ui) = I% % vjyij where Lz stands for some linear
Zve
rREMEE
combination. If we assume that P(u,) = a_+a _u+a_u? ,
o i 00 io
Pl(u) = a,, +ta,u , and P2(u) = a, then we estimate 8, by

averaging P_(u,) over the values of u . That is
2\%i

I

02 o2 123 MREY

2
izj MERET

o>
"
=

Now this is a least squares estimate of a02 only if it is a linear combina-
tion of the right side of the least squares normal equations. That is, only

if it is a linear combination of 5
y
1313

123 Yy Yiy

2

X Yy =
izj"s Y13
]%ui MRET

2
i% MEREY

goz is a linear combination of these terms.
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We estimate ao1 and a11 by

P, (u)
~ -1
a1 LRI 1111 P, (up)
gll z uy Z ui u, u, ugu, P, (ua)
P, (u4)
Ejvj Vi3
.Zu ¥i 3
3311 IRy
|
All of the components of this vector except the last one are in xTy . Hence
201 or 311 are not least squares estimates unless the data points u; v‘j
are such that the linear combinations symbolized by L do not involve this
i last term.
| Now we could also put a uv® in the model so as to put Z u v in

12

1371
the right side of the least squares normal equations. By contlnually putting

terms in the model as needed in this example we find that to determine the
least squares estimates of all of the coefficients by the step procedure inde-
pendent of the data points (except that the design be rectangular) it is nec-
essary that the polynomial in the model be balanced. This example also indi-
cates how we would go4about expanding the polynomial model so as to estimate
certain coefficients by the step procedure. Having estimated some of the coef-
ficients, we mayeliminate them from y and do an ordinary least squares

regression, if it is then practicable.
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APPENDIX A: . STATISTICAL BACKGROUND

It is assumed that the reader is familiar with such terms as expected
value, random variable, variance, etec. If not, ready reference to these
terms may be found in such books as Cramer [2] &dnd Loeve [3]

We shall be concerned here with independent random variables Yyr wees ¥y
such that the expected value of ¥y is a linear function of m parameters

Pys «oes Pp and the variance of ¥; is o, i.e.,

E(y) = Ap

Var (yi) = ¢° i=1 ..., n

where y' = (yl, cee yn) , D' = (pl, cee pn) and A = (a.:.L is a known

Y,
real n xm matrix. We shall be interested in estimating by functions of
Yir eee s Yy certain linear functions of the parameters, say £'p where
L' = (Zl, ey zm) . We call an estimate of £'p which has expected value
2'p an unbiased estimate. If the estimate is also a linear function of the

y's , say c'y, ¢'= (cl, ver cn) , we call it a linear unbiased estimate.

Thus, c'y is a linear unbiased estimate of £'p if and only if

E (E:z) = g l—p

Since E (c'y) = c'A p we have from the previous equation

c'Ap = &'2

as & necessary and sufficient condition for c'y to be a linear unbiased

estimate of £'p . Since we shall consider all of Buclidian m-space as the

—

parameter space, we have equivalently

(5) c'A = g
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We define V (A') to be the vector space geﬁerated by the rows of the
mxn, m<n, mtrix A' and V¥ (A') +to the vector space orthogonal to
Vv (A') in the n dimensional vector space over the real numbers.

The following theorem is basic in the study of linear estimation.

THEOREM A: If £'p is a linear combination of the parameters for which
there exists a vector d' such that E (Q'Z) = Z'p then there exists
exactly one vector ¢' in V (A') for which E (¢'y) = £'p . Further-
more, Var (E'X) minimizes the variance of d'y over all d' such that

E(d'y) = £'p

PROOF: To prove the first assertion consider the decomposition

a' = ¢ + e

where c¢' 1is the projection of 4' on Vv (A') and e' the projection

of d' on V* (A') . Now by assumption

£'p = E(4a'y)

but

E(d'y) = d'ap = (c' +e') Ap = c'Ap +¢'Ap

[}
Fe)
o
Lo
[}
=
—
o
I
-

since e' 1is orthogonal to the column vectors of A . Thus,

E(c'y) = E(d'y) = 2'p

Now suppose ¢! belongs to V (A') and E(El‘z) = 2'p . Then for

every p

23]
—
[¢)
k<
~r
n
=
—
0
i<
~—r

or

c;Ap = c'Ap for all p
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which implies (_ci - ¢') 1is orthogonal to V (A') , i.e., belongs to V* (A') .

However, c' - ¢' belongs to V (A') since each does and thus Ei -c'=0',
i.e., _c_i 2 ¢' . This completes the proof of the first assertion.
Now suppose Q'X‘ is a linear unbiased estimate of g'_p « Then decompose

4" into ¢c; and e; where ¢! belongs to V(A') and e belongs to V* (A') .

As before gl'z is also a linear unbiased estimate of £'p and S_i belongs to

v (A') . By the uniqueness argument given previously gi =c¢' . Hence,

d' =c' + gi . Thus, Var (d'y) = _q’oal,ng = o?d'd = o*(c' + _e_l')(g +e;)

= o%c'c + ozgi_e_l = Var (c'y) + 023;.31 . Therefore Var(d'y) > Var (c'y) for
a' e, i.e., ele, # 0 . This completes the proof.

We shall call this unique estimate which minimizes the variance over all
linear unbiased estimates the best estimate of £'p .

Theorem A says that if the "best" estimate of £'p is c'y ‘then
c¢' = q'A' for some q' . From equation (5) we see that we must have
qQ'A'A = £' . These equations are called the conjugate normal equations.

Conversely, we have that if q'A'A = £' then q'A'y is the unique "best"

estimate of £'p .

THEOREM B: (Gauss-Markov) If £'p has an unbiased linear estimate
then the best estimate is E'S where S are the least squares estimates

of p.

PROOF: The least squares estimates of p are those values for P, »
Pos +oe s P, which minimize the sum of squared deviations of Yy 9 Y50

«v- 5 ¥, from their (estimated) expected value. Thus

n
s = ¥ (y

. 2
= J-ajlpl-ajzpa- ...-ajmpm)
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"is to be minimized by choice of Py » Pyy «ee Py - Now

s2 = (y' -p'A')(y-Ap) =y'y-p'A'y - y'Ap + p'A'Ap = y'y - 2p'A'y + P'A'AD .
By differentiating S' with respect to each of the p's and setting these

m derivatives equal to zero we obtain

- 2A'y + 2A'Ap 0 or

* A'Ap

Ay .
Equations * are called the normal equations. Thus, if B satisfies the normal
equations then ﬁ is a critical point of S2 . Now we shall show that it is
a minimum point.
Let y' be decomposed as y' =m' + e' where m' is in V (A') and e'
is in V* (A') . Thus, m' = x'A' and e'A =0 . Then, y'A=x'A'A + e'A =x'A'A
or A'Ax =A'y . Hence, X must satisfy the normal equations. Conversely
since 5 satisfies the normal equations, ﬁ'A' is the projection of y' on
v (A') and hence m' = p'A' . That is (y' - P'A')A = 0' and p'A' is

in V (A") .

COROLIARY: If Eq'A'y =£'p then q'A'y = 2'5 where ﬁ are least

squares estimates of p .

PROOF: q'A' is in V (A') and by assumption Eq'A'y = £'p . Hence
by theorem A q'A'y 1is the unique best estimate of £'p . By theorem B ,

£'D is the unique best estimate of £'p . Hence qQ'A'y = 2'5 .
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APPENDIX B: FPROCOF OF THEOREM 1

Consider the rectangular design

and the polynomial (2) written, in preparation for step one of the step

procedure, as

(3) D spl® () (et () ()
where b&ﬂ) is a polynomial in x(l), cee x(“-l) of degree (4 - (k-1) ) .

s = F (xil), .y xin)) where f 1is the function to be

1° Ed 1 ¢
approximated by the polynomial (2)
If we can demonstrate that the step procedure estimate of a coefficient
is a linear combination of the components of X'x --where the matrix X arises

from writing the system

- (1)
E (yi ...t ) = Sras.at o T i aF, et
1 14 i
1
(terms in xi ), cee xiﬂ) of degree < d) +
1 7
(n)\a
a11...1c1+1(xt~ﬂ ) ’ s e Ty
in the matrix form
E(y) = Xa

as in the case of the preceding example--and show that such an estimgte is

untiased; then the step procedure estimate is the least squares estimate

[Ref. 1].
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Since the first step of the step procedure is a lea "t squares estimation

1 -
of the b(ﬂ)‘s with x( ), cee x(ﬂ 1) held fixed, the expected value of
) ~( 1) (n) . () _ ,
the estimate bd+1 of bd+l is bd+1 al...ld+l . Also the estimate

ggzz is itself a linear combination of

T‘Jt T‘."[ TJ‘C ( )
b n)\d
Yo .4 0, & xfc )yt et 2 R A .
t=1 "1"""7g t=1 "mx 1 n t. = n 1 n
T n 7
Since bgfz is independent of x(l), ooy x(“) succeeding steps in the

step procedure will at each stage give the mean of the result of the previous

stage over the number of data points in the present stage so that the step

procedure estimate of b(“) is
d+1
T
1 Tﬂ-l A( n)
z bd+
t=1 ot = 1
1 M-1
T, Tz Tn-l

Since ngz is unbiased, this estimate will be unbiased. This estimate will

also be a linear combination of

T T T, T T T
' " T (x) § T (x)yd
... Yy A . X Xy Y Ry el (xt )" v, &
=l =1 a o =l =1 LI =l =l LA A
tl tﬂ 1 ¢ tl tﬂ T 3 1 tl tﬂ b4 7
i.e., the components of X'y . This completes the proof.

It is clear from the proof that by choosing x(l) as the leading variable
the step procedure could be used to calculate the least squares estimate of the
coefficient of (x(l))d . We are usually interested in the least squares esti-

mate of all the coefficients and in this case theorem 1 is not very helpful.
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APPENDIX C: PROOF OF THEOREM 2

Consider the balanced polynomial
L+1 L +1
7

=

, . £.-1
‘... 2 a th..éﬂ), xh)= (éih +
2 =1 g o= zl...zﬂ £, £ﬂ 4
1 x
as an approximation of a real function f of =x real variables x(l),...,x(“)

over the rectangular design

i
D=Dlx...an,Di={xii):ti=l,2,...,T|
(1) 4 (1) }
= # s, 7’ 21 # S5
i i
Let
. (1) (n)
Yo p T TOgT e )
1 14 )
In what follows we shall use capital letters without affixes to denote the

appropriate collection of lower case letters for subscripting purposes, e.g.

L = {zl, cee zﬁ} .

First we shall consider the least squares criterion for estimates of
the a's and generate the normal equations, then we shall show that the
step procedure estimates of the a's satisfy the normal equations and are
thus least squares estimates.

ACTUAL PROOF: Define S by

OGS
A - 1 n :}
S = Z {yt...t Looey g X g
1 7 n 171 '

tl”'tﬂ zl.”zﬂ 1
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and calculate E;————————— S . Setting this partial derivative equal to

1...&

zero, we arrive at the equation

L0 ()

(1)
E'yTxtlal"' tz ta

(0) .
%t a z &L
T L

Now employing the properties of the rectangular design we have

™ "(1)1“‘ <ﬂ> i} {(z ili igﬂ e xgz}ﬂ xgzg‘n)}
7

If we let the matrix (x( ) ) be denoted by X , then we have that
(1) & (1) (1)
Xa, = % X0 %t

No L O,
11 11 11

is the element in the zi s ai position of the matrix X]!_Xi and from (4)

(6) %yT tl) .. J(G"()} = E.a (x(l) D C

Equation (6) is a typical equation from the normal equations.

We shall now use the step procedure to estimate a typical a, ag

«esS
1 b4
In order to facilitate the writing down of this estimate we shall have
need of the following notation. Let
(i) A [ - -
(zz.r')=xi s Zi—l,...,Li+l,ri—l,...,Ti
iti
£ 518 1
[ = -
(x(l) =(Xixi) s; 0 £y =1, «oo, L+l
The first step of the step procedure for finding the estimate of as s is
ERET
(1) -1 .{ n 't ()
a = (X'X)7X'Y =Z z N
tl...tﬂ_lsﬂ T 14 tl.. t r ﬁ zﬂr’t tl...‘l:ﬂ_lrjr
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where Y! = (y 3 e 9 ¥
toeet tiseent 51 et Tﬁ) . The second

-1 n-1’
step is then
(2) 1 -1 [} (l)
a = (X X YU X' a
tl...tﬁ_zsﬁ_lsﬂ (s-1)"(m-1) A L
Tﬂ-l Lﬂ-l+l £ S
- 5 5 X(n-l)n-l Z(n-l) .}-a(l)
n-1 y) r ‘
= -1 7- . e
rﬂ-l : zﬂ-l . n n-1 tl tn-zrn-lsﬁ
The ith step is thus
(i) - 1 -1 ] (i’l)
S R gXpeian) Xlpia®t ot s L
1 n-1’ "g-i-1 x 1 n-1’“g-i-2,... s
Finally
a, = (xXx) lxg (:-1) .
1" " "n 1 2'" " "q
T L,+1
1 1 4.5
= 5 T ¥t lz(l) (x-1)
=1t g (1) “gyry TS, .5_

2 £S5 (2)
= 2 2 x(l) z, L 2 X(z) zZ, .

r.=1 4 =1 171 r2=1 £2=l Lo
Tn 1 Ln l+1 7 s Tn Lﬂ+1 ‘s
IR A

rﬁ_l=1 zﬁ-1=l x n-1" 7-1 rn=l 2n=l = 1T,

By using the fact that we have a balanced polynomial over a rectangular design

we can write

£.s I
as = aS s = Z{ yR ZX(i)l--- X(:)ﬂ Zglz‘ v e Zgnl }
1""""z R L _ 171 TN
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If we substitute a_ for a in equation (6), the right hand side of (6)

becomes
Z{ (xl). (“))}

. £.s £ s
Z Ve {:Z [(Z(l) o Z(ﬂl Yor X(l)l X(i) ) . (Z X(ﬁ)ﬂ (ﬁ) )] }. .

sa
JT.

However

so that we have the

=
Q
it
—
NG
’—l
R
"

£.s. .
Z(x?lx(l))=s
s (l) i

i

= 4

right hand side of (6) equal to

Zy {Z(Z(l) AL ) &, ... & } = 2y (z(l) ...z(“))
R 1T ﬁﬂrﬁ zlal Zﬂaﬂ R R a,r, aﬂrﬂ
which is the left hand side of equation (6) . Thus a_ 1is & solution to the

normal equations and the proof is therefore complete.




{1]

(2]
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A LYAPUNOV TECHNIQUE FOR OBTAINING EXTENSIONS OF AN OPEN LOOP
CONTROL TO A NEIGHBORHOOD OF THE OPEN LOOP TRAJECTORY

By D. L. Lukes

Introduction

We assume that a reference trajectory and the corresponding
control function have been determined for a given dynamical
system. The problem posed is the extension of the control to a
neighborhood of the reference trajectory to obtain a feedback
control which drives the system to the given final state. The
technique is based on the construction of a Lyapunov function
defined in some neighborhood of the reference trajectory.

The usual treatment of this problem is to linearize the
system equations with respect to the reference path and then
control the perturbations about the trajectory. That technique
has the advantage that the system of linear perturbations can
be readily analyzed, but for nonlinear systems 1t is usually
difficult to provide any simple appraisal of the stability of
the over-all procedure. The Lyapunov technique presented differs
from the classical technique by not requiring a linearization of
the system equations. Further, stability is insured. It is
tacitly assumed in both techniques that the over-all design of
the system is based upon some nominal trajectory and in order to
maintain its validity the control must keep the output of the
system in some neighborhood of the open loop (reference) trajectory.

In this preliminary investigation, the approach taken is to
look for the characteristic properties of controls which provide
the extensions and leave open specific determinations for other
system requirements.

The System and the Control Problem

We consider dynamical systems of the form

dx

- =g(XJ U.) s
at

where x and g are finite dimensional vectors and wu i1s the
control vector to be determined. It will always be assumed that
the systems are autonomous (t does not occur explicitly in g).
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Furthermore, to simplify the exposition, we will take x to be
. two-dimensional and u to be one-dimensional. Thus, we will
consider a system

dx,

_ =g (X: U.)
. dt

d'}ca

- = B3 (X: U-)

dt

It will be advantageous to use arc length as the independent
variable rather than time, so we define

t
s(t) = [ |g| ar,
0

. assuming that g=£ 0, where lgl = Vg + g2 . We then get the
system -

d-X:I

. ol £, (x, u)
s g
(£ - =)
&, €]
= f,(x, u) .
ds

Without loss of generality we assume that x(0) = O.

Let the given reference control function be represented by
u® = u°(x°(s)% and the open loop trajectory by x° = x°(s) for
O <s <L. (L 1s the total length of the open loop trajectory.)

The problem 1s to extend u°® to u = u(x) on some neighbor-
hood of the reference so that



(a) u(x®) =u(x°)
(b) with the control u = u(x) the trajectory remains in

the neighborhood of x° and passes through x(L), as
illustrated in figure 1.

X2

Xy

FIGURE 1: A NEIGHBORHOOD OF THE REFERENCE TRAJECTORY

Coordinates for the Neighborhood of the Reference Trajectory

In order to assign coordinates we make the standard
definitions used in the differential geometry of space curves.
Let the unit tangent be designated by

A
T(s) = £(x°, v°) ,
the unit normal by

&(s) = ——— (where k # 0)

and the curvature symbolized by

k(s) = | T (s)] -
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A
Then T(s) S a unit vector tangent to the reference path at
the point x°(s) and N(s) is orthogonal ,to T at x°(s).
The curvature k(s) is a measure of how T(s) changes its
direction as we move along x°

Now be letting y,=2s and settfing
A
X = Ry, N+x° ,

where R 1s a fixed positive constant we can assign the new

coordinates (yl, V2 to every point in a neighborhood of x°
(see figure 2).

y x° (L)

X,

0

Figure 2: Coordinates in a Neighborhood of the
Reference Trajectory

If x° is simple and differentiable then the mapping will

be a homomorphism on some neighborhood of x°. With this mapping

we can stretch an elliptical region along the trajectory as
indicated in figure 3.
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FIGURE 3:

( (v, -Lv)® ¥%

+
(Lv)z  (wv)?
MAPPING AN ELLIPUICAL NEIGHBORHOOD ALONG
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Then by writing the equation for a one parameter family of
retracting ellipses in the y-plane, we obtain a Lyapunov
function on the neighborhood of control in the x-plane
(see figure 3).

Lyapunov PFunction

A short calculation yields the following expression

v(y(x)) =% (), = L
5 T,

which serves as a Lyapunov function. The coordinates are
related by the formula

A
x(y) = Ry N(y, ) + x°(y,)
On a neighborhood of x° we can solve this equation to get
y = y(x).
The retracting neighborhood of x° in the y-plane can be

described by the inequalities

0<y <2Lv

ﬁfyl\.(g yly
< W _ V - — .
Y2 < T, 1

Now to get a relation between u and v which guarantees

that the resulting trajectory will fall within the neighborhood
of control and passes through x°(L), we calculate dv(y)/ds
along a trajectory x(s). Differentiating the formula

{ERINE
L W} ¥,
yields
o _ghl) e D
S B el B et
3y1 L ] 91
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Further

and since

ds  Lay, 3ys dy,
gy yef L vo\l Ly dy,
- gl A I 5
| Wiy, W vy, ! dy,
we find
av 1) yg\v;l:)[dyé 1 Ye}
ds L w2 =\y1 dy, 2y,
YA Ly 7 Y2
= — ] — !f(X, u) vaz— - 3
Welly, I v,
where
oV, 32
vxy2= _ _)
0%y dX,

Note that along x°, y, = 0 so gg = %T > 0. This

corresponds to the fact that x°(s) passes through x° (L)

as s goes to L.




We know that as long as gg >

differentiable function of x, the

x° (L).

Since

on X

It should be

ANA

T, N and k

where

Thus our control criterion

Welly,

(zi)(fi){f(x, u) - VgV, -
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O and v 1is a continuously

trajectory will pass through

is
Va2 1
— |+ - >0
v, L

Yy 1s expressible in terms of x, this is an inequality

and u that must be satisfied in a neighborhood of x°.

A A
T' = kN
A N
B' = -TN
A A A
N' = -kT + TB

A

noted that VVa

can be calculated in terms of

by using the Frenet formulas:

B is the unit binormal and 7 is the torision. Of

course, since we are dealing with curves in the plane only

the first is needed.

It should be noted that one particular choice of the

control which satisfies the above inequality makes

£(x, u)

Y.
Vg¥2 - 5? = 0.
‘ dy, 1 Va

—— - T — = o.

dy, Y1

Thls 1s the same as requiring
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v

Solving this differential equation ylelds y, = g; , Where
¢ is a constant determined by the deviation of the
trajectory from the reference path. In this case the control
satisfies the equation
c2
fx, u) » Vg9, - — =0
e
Thus, the control is calculated in terms of only one of
the y-coordinates.

When the state of the system x coincides with the
reference trajectory, we can define u as u°. This may
result in a discontinuous control function. An alternative
is to abandon the original reference control after the
feedback control has been calculated.

This is as far as the technique can be carried for
a general dynamical system. When a specific system is
chosen, the proper solutions of the control inequality will
become apparent.

Summary

The construction of a Lyapunov function in some
neighborhood of a reference trajectory using natural coordi-
nates has been illustrated. With this function it is
possible to specify a sufficiency condition in the form of

an inequality in terms of the contrecl function u and the
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state of the system x. This inequality isolates classes
of controls which will drive the system to the end state
as specified by the reference control.

Furthermore, these controls can be made to coincide wit
the reference control along the reference trajectory if
discontinuous control functions are allowed.

The technique does not require the linearization of the
system equations and therefore provides an alternative method
for determining controls for some neighborhood of a design
trajectory.

Finally, 1t should be noted that the same technique can

be applied to an n-dimensional system with a vector control

function.
Example
Consider the dynamical system represented by the
equations
dx,
— =X, -1
dt
dXS
— =1-Xx +u
dt

with a reference control function u° = 2(x° - 1). In terms

of arc length, the equations are
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dxl Xz

ds W[kxz -1)2 + (1 -x, +u)?

ax, 1 -x +u

a5 V(x, - 1)2 + (1 - x, +u)?

so the reference trajectory is

s (1
x°(s) = — 0< s<i'2=1
Ve \1

We find the tangent and normal vectors to be

L

N 1 (l) A 1 )
T(s) s N(s) = — and k(s) = 0.
N2 (1

R

Thus, the coordinate transformation used is

A
x(y) = Ryy,N + x°
SO
- -R .
— = >A
22 W2 T
x(y) =
: 1 R :
= T 'y
R 2/
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and the inverse is

22N
A2 VE ‘X
y(x) =
|
-1 1 Xy,
NV2R 42 R
7 -1
_
V2 R
Thus, nye = and we can substiltute into the control

inequality

Y2\ L Y2 1
(——)(—-) [f(x, u) ¢« Y4y, - — |+ — >0
W2ily, v, L

A particular solution is obtained by setting

y
£(x, u) * V¥, - 53 = 0. This ylelds the equation
1
2 -Xx =X, +u Xy, - X,
=2
«/(x2 -1)2 + (1 - x, + u)2 X2 ¥ X%

By solving a quadratic equation, a solution u = u(x) on
some neighborhood of the reference trajectory is obtained.
Notice that on the reference path the solution agrees with
the reference control.
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CONTROLLABILITY FOR LINEAR AND NONLINEAR SYSTEMS

H. Hermes*

Introduction

The concept of complete controllability was introduced by
R. E. Kalman for linear systems. It is the purpose of this work
to give a method of extending this notion to nonlinear systems with
control appearing linearly.

The motivation for the method of extension came largely from
results obtained in [3] , and from the geometric interpretations of
non-integrability of pfaffians given in [l] and [2] . In parti-
cular, Caratheodory gives an argument to show that if, for a single
pfaffian equation, there are points in every neighborhood of a given
point which are not ''reachable'" from the given point by curves satis-
fying the equation, the equation is integrable. This was generalized
to systems of pfaffians in [Zl . There is a difficulty in trying
to apply such results to pfaffian systems which are quite naturally
associated with control systems having linear control. (See §'II).
The reason for this is that the independent variable t, or time,
appears explicitly in the pfaffian associated with a control system.
Hence the integral curves of the pfaffian system, which can be related
back to solutions of the control system, and are used to connect
neighboring points to a given point, mﬁst have t parametrized as
t( ¢ ) with t( ¢ ) monotone. This is not the case in the proofs

given in [1] and [2] .

¥ This work was supported in part by NASA Contract No. NAS8-11020.
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The relation between singular problems and controllability also
arises quite naturally, as can be anticipated from results obtained
by LaSalle in [6] « There it is shown that if a linear system is
normal, the bang-bang control is unique for the time optimal problem ,
Since for a single component of control, normal
and proper are equivalent, and proper is equivalent to complete con-
trollability, one expects that complete controllability has a relation

to the presence of singular arcs. This is discussed in § II.

I. Complete Controllability for Linear Systems

In this section we. will be primarily concerned with the linear

time varying system

(1.1) x(t) = ACE)x(t) + G(t)u(t)

and the constant system

(1.2) x(t) = Ax(t) + Gu(t)

where we assume A(t) is a continuous nxn matrix valued function of t;
G(t) is a continuous nxr matrix valued function of t, with 1 =pr =< n,
while the control vector u is a measurable, finite valued, r vector
function of t.

The definition of complete controllability for systems of the
form (1.1) and (1.2) was given by Kalman, and its consequences have
been studied in a series of papers, see in particular [4] ' [5] .
For the purpose of completeness, I will sutimarize some of the main

results in this section.
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Let @%(t; t xo) denote the value of the solution of (1.1)
at time t, for control vector u, and initial data X, given at tg.
@(t,ll) will denote a fundamental solution of the homogeneous equation
x = A(t)x. The same notation will be used when we have system (1.2)

in mind.

Definition (Kalman). The system (1.1) is completely controllable at
to if for every initial state X there is a control u depending on

u .
to and X such that @ (tl, to' xo) = O for some finite tl.

This definition is valid for the system (1.2) but reference to

to is no longer needed.

Theorem 1.1 (Kalman). The system (1.1) is completely controllable at

time to iff the matrix

!
T T
Wit , t) ;f @(to, TIT)G(T) P (t,, T )T
t

o

is non-singular for some t. = to. (Note: W is a symmetric positive

1

semi-definite matrix.)
Proof a) To show sufficiency, assume W-l(to, tl) exists. Set

w(l) = -GT(Z') @T(to,l')w-l(to, tl)xo , for arbitrary initial data

X . Then
o
u,, . _ _ -1 _
@yt ix ) = Bley e dx ) - OCt) E Wt e )W (t_st))% = O.
Remark 1  The condition w(to,tl) non-singular yields a stronger

result than required by the definition, i.e., any point x  can be con-

trolled to the origin in time tl’ where tl is independent of X,e




b) To show necessity, assume the system is completely controllable
at to' Let €11 ¢ o -y en be a basis for En, and tl,...,tn be the corres-
ponding times it takes to control the basis elements to the origin. Let

t=max ¢t,, . .., t . It will next be shown that any initial value
1 n

x, can be controlled to the origin in time t. Let ul. o o e u” be the

controls which take the basis elements to the origin and define

i, ..., @y

wd(t) ; t = tStj
TI(t) =
0 i t.et=<%t .

b

Now X, =ZO(V ey for some set of scalars o()/ . Define

u(t) =Z o(\) Eo (t). We will show u takes x, to the origin

in time t. Indeed I

&t to)Z o, e, + (e, TI6(T) [ZO(\) 7V (7:)} dT =

t
o

t
- - __h .
L X, {E(t,to) e, +[ ¢k, Tia(THu (T )azf = o.
t
o

We now assume W(to, t) is singular for all t = t_ and show a
contradiction. This assumptionimplies there exists x0 # 0 such that
XX W(t , T)x_ = 0. Define

o o (0
w(t) = -a"(7) Pt , t)x_ .

Then
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ol

T F - tT » -
x w(to,t)xo- w(T) uw(T)daTt =0,

On the other hand,

which implies u*(t) = O since u* is continuous.

there exists a & such that

t
x =-|  §t,TI6T) A TIaT
t
(e}
therefore
T
-7
XL x, = -] w(D) eT(T) éT(co,T)xo aT
t
[o]
%
= =] WN(T) w(T)aT =0
t
[o]

since u* =z O.

This contradicts the fact that X, £ 0.

Remark 2. It is easy to show that if the system (1.1) is

completely controllable at to’ then it is completely controllable at

any time t <= to. It is not, however, necessarily completely con-

trollable at a time t => to.
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Corollary 1.1 A necessary‘and sufficient condition that there exist an

(nxr) matrix valued measurable function V(t) such that for some

tz == to' the matrix

1-3) Wi, t,) e, THG(T) W(T)aT

is non-singular, is that for some t, = t, W(to, tl) is non-singular.

Proof: Sufficiency is immediate by choosing

V(t) = GI(t) @T(to, t)

and

To show necessity, assume V(t) is such that W(to, tz) is non-
singular. We proceed to show that this implies (1.1) is completely

controllable at to. Indeed the control
u(t) = -v(t) Wt , ) Bt £ ) x
o' 2 2 Yo' 7o

takes the arbitrary initial data.xo, given at to, to the origin in
time t,. This implies (1.1) is completely controllable, which, by
theorem 1.1 implies there exists a t; = t, such that W(to, tl) is

non-singular. l

Corollary 1.2 (Kalman) The system (1.2) is completely controllable

iff the rank of the matrix [G, AG, « « « An-l G] = n. In this
case any point can be controlled to the origin in an arbitrarily small

positive interval of time.
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Proof: See [h] .
Remark 3. As shown in theorem 1.1, if W(to, tl) is non-singular
then any point x, can be controlled to the origin in time tl. Also,

if X is any other point, then X can be attained at time t from the

1’

point X, at to’ by use of the control

u(t) = GT(t) @T(to, t) w"l(to, t)) [Q(to, t)) X - xo].

Application to Minimum Amplitude Transfer

Assume that the system

(1-4) x(t) = A(t) x(t) + h(t) u(t)

is completely controllable at to’ with W(to, tl) non-singular and
b(t, t,) the fundamental solution of X = A(t)x.
The problem considered is that of transferring an arbitrary

point X, to the origin in a given time t, (which is large enough so

1
that the transfer is possible) and to do this with a control which
has minimum}foo[to, tl] norm. The problems of such transfers with
minumum energy, i.e., controls which have minumum 582 norm is solved
in [5] .
oo

It will turn out that the control with minimumaza norm for the

above problem, will be constant, in absolute value, for almost all t,

i.e., a bang-bang control. This should be expected, in view of the

results obtained by LaSalle [6] for the time optimal problem.

Define F'(t) ai e, v rdY),  i=1,2,...,n,
=i

and let F be the vector with components F. Then the assumption of
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complete controllability, and t, such that W(to, tl) is non-singular,
implies that for any constant vector xo, there exists a control u
such that

Y

(1-5) x F(T)Hu(T)atr .

t
o

We consider the functions F' in fl [to’ tl] and the control u
)
in ,{ [to’ tl] « Let L be the linear subspace spanned by the functions

Fl,...,Fn. DefineL.Lby
t
Al {seL‘x’: g(T) Fl(Z")dT=o,i=1,2,...,n}

t
o

Let v be any control satisfying (1-5). As the solution we seek a
00 L
control u, of smallest f norm and such that (u-v) € L- , i.e., we
1
seek a closest element w €L to v, and then set u = v-w .
The problem is now posed so that the following well known theorem

of functional analysis can be applied.

Theorem: Let L be a linear subspace of a normed linear space X and
L
let L © X* (the normed conjugate space) be the set of continuous
*
linear functionals in X* vanishing on L. For any x, € X*, of distance

4
d from L , We have

d = min lx - X = sup — =
£Le t* xeL x|

where the minimum on the left is actually attained by some ’Zo in L N
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(Here |xo‘| denotes the norm of xo‘ on the subspace L.).
L

For a proof of this theorem, see [8] s Where a moment problem
of the form (1-5) is also considered, and it is shown that the

solution satisfies ‘u(t)l = ¢onst. for almost all t.
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II. Extension of Complete Controllability to Non-linear Systems,
with Linear Control

In this section we consider extending the notion of compléte con-

trollability to systems of the form
(2-1) x(t) = glt, x(t)) + H(t, x(t)) ult)

where g is an n-vector, H an nxr matrix, while u is a finite valued
measurable control vector. It is assumed that g and H are C; in all
arguments. Throughout this section the stipulation 1 <r <« n is re-
quired to hold, and it is assumed, mainly for convenience of notation,
that H has constant rank r throughout the domain A~ in (t, x) space
of interest.

Let B(t, x) be a C?*, (n-r) xn, matrix, with rank n-r, satisfying

(2-2) B(t, x) H(t, x) = O, (t, x)e O~ .

We can therefore associate, with a system of the form (2-1), a

pfaffian system

(2-3) B(t, x)dx - B(t, x) g(t, x)dt=0 .

Definition 2.1. The pfaffian system (2-3) is integrable if there

exists a linear combination of the rows of B, taken with Ci scalar

n-r
valued coefficients % (t, x), such that if b(t, x) =Z o« (t,x)b’j (t,x),
¥ Qzl

where the blj are the rows of B, the nfaffian

(2-4) b(t,x)dx - b(t,x)g(t,x)dt = 0
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ig an exact differential. (We assume b # 0.)

It should be noted that there is no loss of generality in assuming
(2-4) an exact differential, since if it were merely integrable, the
integrating factor could be included with the scaler multipliers o
to form a new pfaffian which is an exact differential. Throughout
this section the vector b will represent some linear combination of the
rows of B.

Before stating an explicity criterion for complete controllability

| of a system of the form (2-1), one may ask: What should one expect the

definition to yield? This can presently be answered as follows. Since

the definition should extend that given for the linear systems considered

| in Section I, which are special cases of (2-1), one expects:

a) If g(t, x) = Ax, H(t, x) = G, where A and G are constant,
then the analytic criterion which defines complete controllability
for (2-1) should imply and be implied by the rank of the matrix

[G, AG' e o o An-lG] = n.

b) If g(t, x) = A(t)x , H(t, x) = H(t), then the criterion which
defines complete controllability of (2-1) should be equivalent

with the condition W(to, tl) is non-singular for some tl > to.

¢) There should be a geometric interpretation of the condition,
e.g., what points are attainable from the initial point in finite
time. In the linear system, there were global attainability results,
i.e., any point oould be attained from the initial point via a tra-
jectory of the system. In the non-linear problem, one would expect

at most local results of this nature.
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The approach will be to state a criterion for complete controllability
of (2-1) which we will show satisfies a) and b) above. We then use this
criterion to show what the geometric interpretation mentioned in ¢)
should be. Of course, how the definition of complete controllability

should be extended, is a matter of personal opinion.

Definition 2.2. The system (2-1) is completely controllable at 1:(> if
the associated pfaffian system (2-2) is not integrable for t = to’
(t, x)e B .

It will next be shown that this criterion is equivalent to the
condition W(to, tl) being non-singular for some t1 > to’ when
g(t, x) = A(t)x , H(t, x) = H(t).

For the system
(2-5) X = A(t)x + H(t) u
to form the associated pfaffian system, it suffices to take B = B(t).
Also, in forming the vector b = b(t), there is no loss of generality

in taking the functions 0(1) as functions of only t. Indeed we must

only show that if the pfaffian
(2-6) b(t)dx - b(t) A(t)x dt = 0

is integrable, then the integrating factor, denoted by am, can be
taken as a function of only t. To obtain this, suppose palt, x) is

such that
)"1(1:, x) b(t) dx-)?(t, x) b(t) A(t)x dt

is an exact differential. Then Fx bt - ﬁx vd =0 for all i, j=1,2,..,n
J i
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and }Ttb +pab= -/szbe-ﬁbA . Define am(t) = m(t,07.
It follows that m(t) is also an integrating factor.
Since it is sufficient to consider both am and the °ﬁj as
functions of only t, there is no loss of generality in considering

that if the pfaffian system

(2-7) B(t)dx - B(t)A(t)xdt=0

associated with (2-5) is integrable, then (2-6) is an exact

differential for some b.

Theorem 2.1 For the system (2-5), a necessary and sufficient condition
for W(to, tl) to be non-singular for some tl "to, is that the associated

pfaffian system (2-7) be non-integrable.

Proof: a) Necessity. (We shall prove the contrapositive).
Assume (2-7) is integrable. This implies (2-6) is an exact differential

for some vector b, which in turn implies
b(t) = -b(t) A(t) .

Let §(t, to) be a fundamental solution of X = A(t) x. Then the vector
b admits the representation b(t) = ¢ Q-l(t, to) for some constant vector c.
Let h(t) be any column of H(t). Then O = b(t)h(t) = ¢ @‘l(t,to)h(t) =
c &(t_, t)n(t). But
t
1 T T
Wit yt,) = @(to,t)ﬂ(t)ﬁ () (t,.t)at.

t
o

Since h was an arbitrary column of H, for every t]_E: to we have
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c W(to, tl) CT;_Owhichimplies' since Wis a symmetric, positive

semi definite matrix, that W is singular for every tl = to.

b) Sufficiency (Again we shall-prove the contrapositive)
Assume Vl(to, tl) is singular for all t; =t . This implies there

exists a vector c(tl) such that

ol
(2-8) ‘}_“1) [ ety ) BCE) H(L) @T(to, t) dt cT(tl) =0
t

¢]

for any tl = to. From continuity of the integrand,

c(t;) §(to’ t)H(t)HT(t)QT(tO, t)cT(tl) =0 fort =t=xt

1

Letting O denote a zero vector, it follows that

1
0 = clt)) Ple, t) H(E) = c(t)) (e, ¢ ) H(L),

thus b, defined by b(t) = c(tl) §-1(t, to) is an admissible vector in
the sense that by h = O for all columns h of H, showing that b lies in
the subspace spanned by the rows of B.

Define a scaler valued function

Fe, 0 = oty T, ) x.

We will show that ? is an integral of the pfaffian equation associated

with b, i.e., the equation

oty) I, t)ax - ( e(t) §7Ht, t )A()x) dt = o.
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Indeed k:{/x(t, x) = o(t,) §‘l(t, t ), while ‘{/t(t, x) =c(t;) §-l(t,to)x =

- c(tl) é-l(t, to) A(t) x which is as required.

Since the condition; rank [G, AG, . . . , An-lG n], for the

system (1.2) can be deduced from the more general criteria that

W(to, tl) have an 'inverse for some t, > to’ the verification that our

1
extended criterion of complete controllability is equivalent with the

existing criteria for linear systems, is completed.

Geometric Interpretation of Definition (2.2)

By associating a pfaffian system of the form (2-3) with the system
(2-1), it is conspicuous that the stress is taken away from the
functional form of the elements of the matrix H, and placed only on
what the range of H(t, x), considered as an operator on E , is. This
obviously should be the case when controls are required to be only
finite valued and measurable,

In their paper [7] , Markus and Lee consider a system of the form
x = F(x, u), F € clin E®x g) , where g) , a compact set contained in
E" with O in its interior, is the range set of the control. Assuming
F(O, 0) = O and letting A = Fx(O, 0), H= Fu(O, Q), it is shown that
if the linear system x = Ax + Hu is completely controllable, then the
set of points from which the origin can be reached in finite time, by
trajectories of x = F(x, u), is an open connected set containing the
origin. Kalman [9] pointed out that a similar result can be obtained
for a system of the form x = F(t, x, u) by assuming the linear approxi-
mation is completely controllable in terms of the criterion given in

theorem 1.1.
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We next proceed with an analysis, similar to that used in the
papers mentioned asbove, to examine local controllability about a given
trajectory of the system (2-1). Let x(to) = O be initial data for this
system, v an arbitrary control (finite valued and measurable) and Qv
the corresponding solution. Let u(t; §’1, .« e ey ?n) = u(t, £) be a
family of controls such that u(t, o) = v(t), ug exists, and denote

x(t; % ) as the respons.e to u(t; ?’). Then x(t; %’ ) satisfies
. 2

x(t; §) = [gc’f, XT3€)) + BT, x(T56)) uT; f)] ar

t
o

t

xg (t; 0) = [gx(r, PN xg (T3 0 + BT, FTNHWT)

t
o
xg (73 0) + KT, (7)) u (T, o)] aT
r
. i s . i 9
where Hxv is an nxn matrix with i j® element being Z Hx v
J
N o3

For each t zto, we view x(t; f’) as a mapping f’———x with
O——e= @' (t). Letting Z(t) denote the Jacobian matrix x g (t; 0),
if it can be shown that for some t, 2(t) is non-singular, it follows

that the attainable set of time t, contains a neighborhood of the

point %V(%).
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Let @(t, to) be a fundamental solution matrix of the system

%(t) = [gx(t, V(L) + H (t, ga"u))v(t)} x(t).

Then

t
Z(t) 5[ @(t,T) H('C',QPV(T)) ué (T; 0) aTt .
t
)

From corollary l.1 and theorem l.l, a necessary and sufficient

condition that there exist an nxr matrix u? (t; 0) such that Z(tl)

is non-singular for some t

1> to’ is that the linearvsystem

(2-9)  ¥(t) = [gx(t, P (e))+H (t, ?v(t))v(t)} y(t) + H(t, @V(£))u(t)

be completely controllable. In terms of the pfaffian approach, let

B(t, x) satisfy (2-2) while b(t, x) is again an arbitrary linear com-

bination of rows of B. Then there existsan nxr matrix u? (t, 0) such

that Z(tl) is non-singular for some t. = to iff the pfaffian system

1

B(t, ¥'(t))ax - B(t, (PV(t)) [gx(t, 9)(t)>+nx<t,¢"<t))v(t)] xdt= 0

is non-integrable. From definition 2-1, this means

(2-10) b(t, ¥(t))ax - blt, P'(t)) [gx(t, gav(t))mx(t,sﬂ"(t))v(x)] xdt=0

is not an exact differential, for arbitrary b.
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It is interesting, at this point, to see the implications of the
assumption that (2-10) is an exact differential. This implies and is

implied by the condition

(-11) S et U0 = a(t, F(e)) lgx(t, () + B (¢, ;o"(tnv(t)] ,

which can be recognized as the so-called adjoint system of the maximum
principle approach to the time optimal problem for system (2-1). It
should be noted that if p(t) = b(t,gbv(t)) satisfies (2-11), then it is
an adjoint vector which is orthogonal to all of the columns of H. Since
the maximum princiﬁle, for control components bounded by one in absolute

. n . < .
value, implies: choose ud(t) = + sgn E:pl(t) HlJ(t,Sbv(t)); in this

i=1

case it yields no information since b(t, x) H(t, x) = O.

I shall designaté such a problem as one which admits a totally
singular arc, i.e., where the maximum principle yields no information
in the time optimal problem, for any components of the optimal control.

The problem would be singular, but not totally singular, if p is orthogonal
to some, but not all columns of H.

I return again to the assumption that (2-10) is an exact differential.
Since b(t, x) H(t, x) = O, for any vector v(t), O = s%; [b(t,x)H(t,x)v(t)ﬂ
or v(t) HT(t, x) bx(t, x) s -b(t) Hx(t, x) v(t). Evaluating this
identity at the point (t,§5v(t)), substituting into (2-11) and expanding

the left side yields

(2-12) b (t, P'(0)) + b(t, P () g (t, P (£)) + glt, F'(£)) b£<t,yv<t>)s

v(t) B (¢, (L)) [bx(t,gﬂ“(t)) - bz(t,fpv(t))] .



300

The identity (2-12) is a necessary and sufficient condition that (2-10)

be an exact differential.

Lemma 2.1 If the system (2-1) is not completely controllable at to’ i.e.,
the pfaffian system (2-3) is integrable, then the matrix Z(t) is singular

for all t = to’ and for all reference trajectories gﬂv.

Proof: If the pfaffian system (2-3) is integrable, then for some b, (2-4)

is an exact differential. This implies and is implied by the conditionmns

b, (t, x) = -b(t, ) g (t, x) - g(t, x) b;r:(t, x)

T
bx(t, x) bx (t, x) = 0.

Evaluating these two identities at (t, yﬂ(t)) for an arbitrary control v,

shows that (2-12) is satisfied, hence Z(t) is singular for all t = to .'

It should be stressed at this point, that it has not been shown that
if for some control v, the matrix Z(t) is singular for all t = to’ then
sufficiently small n-nbds. of a point 5ﬂy(t) contain points not attain-

able in time t, from X, at time to.

Another conjecture which one might be tempted to make is that if the
pfaffian system (2-3) is not integrable, then (2-1) contains no totally

singular arcs. This is not true, as the following example from [3] shows.,

1l

It

. 2
Example: X, =% - x" x,u xl(O)

]

X, = =X, + U x2(0) 0.

For the time optimal problem of reaching the point (2, 0), it is shown

in [3] that u = O is the optimal (singular) control, if the restriction
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|u(t)] = 1 is imposed, and it easily follows that this is also the
optimal control in the class of finite valued measurable controls.
For this problem, one can use for the matrix B, the single vector

(1, x,” x,). The associated pfaffian equation is

1 "2

dx, + X 2 x, dx, + x 242 - 1)dt = O.

1 1 %2 % 1 (%5

Let x = (xl, xa),

2

a(x) = (1, X" x x 2(x22 - 1)).

2! 1
Then (curl a(x)). a(x) = 2 X, xl2 Z 0=———— the pfaffian is not
integrable.

The optimal path from the point (1, O) to (o, 0), & > 1, is ob-

-tained with control u =z O and is

1

1-t

1]}

§a°(t)

Thus b(t, fbp(t)) = (1, 0). We next compute

b(t, () . ax - b(t,@°(1)) [gx(t,sﬂ%t)) + B (£, £°(8)) . o] x dt

l1-t
—2xl
Let a(x, t) = (1, O, TITZ))' Then (curl a). a = O which implies the
1 5 - %szaat =0isintegrable, and the problem admits a

pfaffian dx, + O dx
totally singular arc. Pictured below is the reachable set, from (1, 0),

with the control constraint lu(t)l = 1. Changing this constraint to
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|u(t)l:§ M does not essentially change the figure and in particular, does
not change the arc ;bo(t), which is such that all neighborhoods of a point
S’O(t) contain points not attainable from (1, O); even when the control
class is chosen to be the class of finite valued, measurable functions.

X

Slowest path to a point of the
form (¢, 0), ¢ > 1

.
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ABSTRACT

-
5096

Perturbation solutions of the equations of motion are presented
which define the motion of a vehicle subjected to a low, constant thrust
acceleration. A complete second-order solution is given for the case in
which the thrust vector makes an arbitrary but constant angle with the

radiu$ vector. Application of the theory to transfers between circular

orbits 'is discussed. /qlcdti*v
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PERTURBATION SOLUTIONS FOR LOW THRUST
ROCKET TRAJECTORIES

INTRCDUCTION

Under Contract NAS 8-5248, Acronutronic has been investigating
the motion of a vehicle subjected to a low, constant thrust acceleration,
The intent of tie iavestigation has been to improve the analytical repre-
sentation of low thrust trajectories through perturbatioﬁ solutions to
tilc system equations of motion, Of primary interest is the application
of the perturbation solutions to orbit transfer problems., By making use
of these solutions, certain optimization problems of interest may be
treated within the rcalm of simple optimization theory, and improved numerical
computation techniques can be developed. This paper summarizes the pertur-
bation theory, which includes a complete second-order theory for the motion
where the thrust vector is maintained at a constant angle with respect to
the radius vector. In subscquent sections we will introduce the system
equations, present a first-order solution for tangential thrusting in
order to illustrate the basic methodology, and then proceed to develop the general
second - order theory, We will then conclude by discussing the application

of the theory to orbit transfer problems using an energy/momentum approach.
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EQUATIONS OF MOTION

Consider the problem of finding perturbation solutions of the
differential equations of motion of a rocket moving under low thrust.

The equations of motion are

2P v 2

€Y — - 5t -1—2- = @ cos ¥
daT° P
1 d
) Ak (PV) = asiny
The notation is that of E. Levin (Ref. 2). We define V = 0 ad-:—- ,

o = (thrust acceleration + initial gravitational acceleration), where
0< “(%, ¥ is the angle from the radius vector counterclockwise to the
thrust vector whilep , 0, T are dimensionless_ position and time varte-

ables,. (See Figure 1) Thryst

FIGURE 1°
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The constants of integration are determined according to the initial
conditions, o= 1,0 =0,T = O,é =1,0=0, s = 0, where s is a
dimensionless arc length, The notation,t;andeenotcs the differentia-

tion of pand Owith respect to T,

TANGENT [AL ACCELERATION

14
Consider the case of tangential acceleration: tan ¥ "=,

Then the equations of motion, (1) and (2), become P
2 2 .
Q v a
(3 9_,__2_ . + Lz = £
dT P 52 + w2

@ 1+ L v -

With (dS)Z = (d p)z + ,02 (de)z, the dimensionless arc length, and

V= p %_—_(-3- » Wwe obtain
i
2 2
. 2 2
O I e

We note from Levin (Ref, 2) that

(6) E = aicos¥ + av sin y¥

where E = % the rate of change of the instantaneous energy E, For the

tangential case, equation (6) becomes

M E = ab({j—) + av(-%—) =q V
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Now, changing to the independent variable, s,we have

(8) E=as + Eo

Expressing equation (8) in terms of the speed V for anm initially circular

orbit, we arrive at the first integral obtained by Benney (Refll)

2
2 ds _ 2
9) Vv = (_d’r) =5 +2as -1

Thus equation (4) can be written as

(10) d(pv) _ adT _ adT_ ads _ ads
pY ,'2-{—1/2 gfs,- (93‘)2 24 2as-1
Integrating equation (10) we obtain
af 5 ds
5 + 2as-1
(11) h = pv=ce g
where h = pv is the angular momentum .
x x>
Witk the approximation e” =1 + x + 5 for small x, equation (11)
reduces to
a 2
(12) h= pv=1+ag(s) + 5 & (s) ,
where g(s) = f 3 ds -
=+ 2as-1

Je
Similarly equationp (3) can be written as

. ) ) .
rdp v .1 ._ .49
(13) 112 p+,02 a3s
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We next show that equations (3) and (4) can be brought into the form

ds
2 2o/ i)
(14) d sz + u=-e 2ut2a s~1
ds

{.af ._..__d_s___}
d 1 202 s-1
as) g5 = 7 ©

u

where u = % . Setting p = % in equation (11) we obtain
25 2 d9 _ ag(s) 1 4o
Y o= = —— 2 e = = — —— -
(16) fv=10"6= 0 = 5 e 55 h
u u

which is equation (15). Setting p = é in equation (3) we get,

dp 1 dudy du 4% 2 2 d%u 2 dh du
T = T 7 a®dr R gt M e 3 T Y ge

Substituting these dérivatives into eyuation (13) we obtain

2
du _ 1 1l jdh du a_  dp
an — + u= = h |0 a0 T T ds] .
do h hu

For the tangential case, we will siiow that the quantity inside the bracket
is zero,

From equations (15), (16), and (9), it follows that

dh _ ah ds _ gh.dh g 2 db dh _ _a
T oLz oar T gt 5 °° 9 T 3
S S u s

- .1 du &
Also ds 2 do ds
u
2 2
From equation (4) 46 = 3 %% hsu

ds
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so that QJQ = - b du
~ds s

Thus the quantity inside the bracket in equation (17) is zero, thereby
substantiating cquation (14).

We regard the right side of equation (14) as a function of 9 so that we have

a nonhomogeneous linear differential equation with constant coefficients,

The complete solution is obtainable by variation of parameters in the form

. o) o3 -2 e . s s ‘0 o

(18) u=Acos 9 + B sin§ -—21- e’ Je 16 @8i8)g0 +-%e 1efe16 2ag(s)d6
. _ ds

where i = ¥ -1, A and B arc arbitrary constants and g(s) -f—_‘—_—2u+2as-1

Integrating equation (18) by parts,we have
L2 =20 p(s 2
(199 u=AcosO + 3B sint + e g(x)+ 0 (a”)

as a first order solution. To obtain a more explicit form for the particular

integral, we differentiate

ds
-? - —————————
(20) u = e ®8(s) _ =3 ] semas

with respect to s to obtain

ds
-2a —298s
21 du _ -2 e f2u+?_a s-1  _ -2qu
D 35 T Zerzas-1 2u+2a s-1

which can be arranged as

(22) u ds + sdu=-ila du - al- u du = d(us)

. . u .
which has the solution us = Y T ¢y» or since wu = 1 when s = 0,

(23) uvu = 1-2as.
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Using equation (23) in equation (15) and knowing that

d8 = Vuz - -]-'5 (-g—‘;— )2 ds we find that
u
6 ="s+0(a).

Now, evaluating the constants of integration in equation (19) according to the

initial conditions, we get A =0 and B = 2, so that equation (19) becomes
: . 2
(24) u=1-2a(s - sin s) +0(a )

or since pP =

e h=

we have an coxpression which is in agreement with Benney's result,
. 2
(25) p=1+2a(s - sin s) + g(a”)
- . 2
We now write equation (15), neglecting terms of order a7,

2 (1l -as) do+ O(az)

LAN

(26) dT7 = [l -2a(s - sins) ]}~

[1 +a(3s - 4 sin s) ]4:‘)

2 1 du, 2
\/u - :5 (ds) ds, we get

Using 46

(27) de@

[1-2a (s - sins)] ds
We can integrate equation (26) to get

| (28) T-C

[ [1+a@3s -4 sins)] [1-2a(s - sin s)] ds
2

<

s +a(*s-2“ + 2 cos s)



314

s =0 when T =0 so that C = - 20 and equation (28) can be written as

9

29 T=s+aly - 4 sin’

(317
p g
.

Equations (25) and (29) constitute a complete first order solution of
equations (14) and (15) in the case of tangential acccleration., Analogously,

a second order solution can be derived,

GENERAL CASE
Let us now consider the more general case of thrusting with a constant
oricutation angle w . 'The equations of motion are now of the form of cquations

(1) and (2). Writing equation (6) in a different form,we have

° N ‘ . o
(30) E=V%=°‘°°5("’-¢) e vl
or

) - 1 _ 1 2 1 _ 1 :2 1
(3D };=ancos (O=-¢) ds + C = 3 v -3 - 3 -1

We coose C = - 5 to satisfy initial conditions, =1, s = 0, T= 0, and

then ecquation (31) becomes the first integral

)
(32) V2 = s’ = 22060 -1
where f(s) = [cos (p-7) ds = s sin ¢ + 0(a)

In the same way that we obtained equation (11) we now obtain

{th Si; Y ds },
(33) -h=pv = e v
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In place of equation (17) we will have

2
d u 1 1 dh du Q cos ¥
4 — = e—— - - —_— —— Y2 L
(34) PRV 2 h [do KT 2 ] .

h u

. 1 db dh A gin 3 dop. 2 2 .
Since h = ;—2- I and rris —-*u—\—,l—k /(—d—b— + P » We can write
equation (34) as

a’ 1 " dp.2
u - L _ a |sin¥ . du 2 2 ds
(35) duz + u h2 = [——u 30 (de) +P° + cos FE ] .

Heuce we can write equations (35) and (33) as

2
. d’u _ . f sin¥ds | a 1 - /g_ 2 2 du
(36) —_d’dz + u = exp L'za,fWXJ_ ot [—-u siny (d‘g) + P T

d inyd
+c057{/3—%] exp ,:f-af.s.l_“’j’[‘/ls}’

(37) dr _ 1 f sinyds | h X =
= 7 e e[y o, where o 2 exp {x)

The complete solution of equation (36) is obtainable by variation of parameters,

analogously to equation (18), as

(38) u=AcosO+Bsin9-—; e 19 o 718 Fl(G)d9+—§-e-ineieF1 (6)d9

where

; - _ o siny ds ]»_ a 1 . da 2 2 du
1 (9 QXP{ZI v @@ 00 - G| u s @R v T F

+cos¢§%} exp {-f—-——wsvis_ g—%d@}
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2
Using the approximation e ~1 4+ x+ );_— for small x, we obtain a first

order expression for equation (38).

. i i6.-i0 ~ i -0 i6
(39) u=Acos O+ DB sin9 -5 e Je FZ(G)d9+2 e [ e F2( 0)d 6
where Fz(f3)=l-2af—s1—ji-‘[-;—-*2- g—gdc - % coswg—g +0(cx,2).

Upon integrating equation (39) and evaluating the constants of integration,

A and B according to the initial conditions 0=0, u =1, <_i£8 = 0, and letting
Yy = '{"/o’ a constant, we obtain

(40) u=1-a[2 singl/o((}‘-sinG)-i-cos 7}/0 (1 - cos6) ] +O(a,2).
(41) p= 1+a[2 sin '¢/o (= sin6) + cos wo (1 - cosG)] +0(a2).
Using equation (37) it follows that
. 3 .2 - .~ 2
(42)‘/'=O+a[sxn'¢/o(§ 3% + 4 cos 9-4)+2cosvpo(:j-51nd)] +0(a).

Since (ds)2 = (d P)2 + p2 (dE))2 , we can write ds = pd5 + O(az) so that
by equation (41)

(43) s = 9 +a[sin '¢/o (92 + 2 cos 3 - 2) + cos g’/o (9= sin §) ] +0(a2).

In general, the basic solution to equations (1) and (2) can be written in any

of the two explicit forms,

(46) p=p (9), T=T7(3)

(45) p

pCr), 86 =6(T)

We have already shown that cquations (41) and (42) take the form of (44). From
equations (41) and (42) we obtain the form (45), namely,

(46) p=1+a[?2 sin v, (7-sinT) + cos ¥, (1 - cos T)] + O(az)
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(47) O =Teaqa [sin 7,l'o (‘:3,' T + 4 cosT=4) + 2 cosillo (T=-sinT) | + O(az).

Other relations involving s are

(48) O=s-a[sin7,"/o (sz+.2coss-2)+cos 3«'10 (s - sin s) ] +O(a2),
2
(49) p=1+a [2 sin "9’/0- (s - sin s) + cos 'g'/o (1 - cos s) | + o(a™),
1 2 X 2
(50) T =s+a [siny (s t+2cos s -2 +cos¥ (s-sins)] +0(aM.

We will now develop second-order exprc%xuns in the two explicit forms as noted
by (44) and (45). }'rom our earlier fxrst order results we obtain the following

expressions:

u=1-al2 sin 'Wo (9 - sin 9) + cos “’I/o (1 - cos®)] + 0(a2)

g%=a[-25in‘¢/°(1-cosG)-cosy'/OsinG']+O(a2)
p=1+al[2 sinwo(G-sin0)+cos7,bo (1 - cos U)] +0(a2)
= ?+0(a)

Q.I:]_-;-a[sinzp (30 - 4 sinB) + 2 cos ¥ (1 - cos )] + 0 a2)

de o ‘o
V=1-a[sin‘wo(9-Zsin6)+cosl,0° (1 - cos 9)) +0(a2)

vV +0( a,z).

Upon substituting these expressions into equation (38) and integrating and
evaluating the constants of integration, A and B, according to the initial

conditions we have
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(51) u=1+a [cos ¥ (cosf- 1) - 2 sin ¢'0(9-sin0)]
o

2 2 2

+o [sin” % (- 287 - 78 sinf - 18 cos O+ 18)
J/o
"
+ cos” ’J/O ( Osin 5+ 2 cos6 - 2)

+ sin 7//0 cos "J/o (- 86 - -1;]-'- 0 cos 9+%’- sin 6] + o(a3)

Since (1 +ax +O(.2y)-1 =
(51) as

1l ~ax + a.2 (x2 - y) +0( a3) we can write equation

(52) p=1+a [cos Y, (1 - cos8) + 2 sin 2,’/0 (J - sin 8)]
2 ) 9 9
+ o [sin” ;[/0 (667 + 4 sin” 8-9sinf+ 18 cos 6- 18)

+ cos2 1//0 (cos2 6- B8 sinB- 4 cos B+ 3)

+ sin '¢/o cos z//o (128+% S cosB - % sin 6+ 4 sin Bcosf ]+ 0( CL3).

Upon substituting equation (47) into cquation (52) we obtain p in terms of

T , namely,
(53) p = 1 + afcos z,[/o(l - cos T) + 2 sin 1,!/0 (T - sinT) ]
2 . 2 2 2 2 .
+ a” [sin ;{Jo (37" +377 cosT+ 5cos T+ 6 cosT+ 2T sinT~- 11)

+ sin ¢ = cos 28 87+ —151- T cos7 =

Nlw

72 sinT--]-'z-g-sinT

- 4 sinTcos T) + sinz'r- 3T7sinT =4 cosT + &4 ]+ 0( a,3).
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We obtain 7 in terms of Y from equation (37)

(54) T = 2+ af?2 cos ',i"o (& -
2 2, 7
a” [ sin™ ¥ (%
+ [sm ,/0 (3

2 .
+ cos ’
'/o

. ‘73
+ sin ¥ cos ¥ (= U
7Io "o (2

53

(2 tcos U- 12 sin i+

2

27 4 4 cos O - 4) ]

NI

PR s
sin Y) + sin

o

+ 24 sin D4+ 6 ‘cosC = 6 sinYcosO ~ 24 3)

17 .
5 )

sin Jcos O+

tohw

2 - A .2
)= 4+ 37 cosT+TsinP- 6 cos I - 31)] -i*O(OL:})o

From cquation (54) and using equation (47) we obtain Y in terms of T

(55) 9

oW

T+ Q [sin ,’/U (-

)

+ a” [<iu

~~

Yo
2
+ cos 7'[/0 (8 sin

+ sin //) cos
«

"o

We now have enough inforaation available to olitain

Tz-&cos T+ 4) - 2 cos ”1/0 (T - sin7) ]

r3 -8 sini+ GTcos 7= 6 T2 sinT - 10 sin TcosT + 127 )
T= 6T ¢os T + g— sin 7TcosT - % )

(= % 7'2 - 21 cos T~ 15 TsinT - 10 coszT- 3 .”zcos T+31) ]

+0( a3)

encrgy and mowentum expressions,

Using cquations (31), (32), and (33) wec have

(57) E = - % +QT sin 7{/0
+ o(,2 [ sin [ (= 1.2 - cosT+ 1) + sin?yy cos ¥ (T=- sin T
zr0 2 Yo To"
L . 3
+ 8 sin TcosT) - cosT+ 1] + 0( &)
‘ . 2 , 2 2 . . ;
(58) h =1+arTsin z[/o +a“ [ sin ‘-,!/o (T° 4+ 2 cosT- 2)+ sin zl/o cos z//o (T - sinT) ]

+0(a’)

The previously developed equations constitute second-order solutions to equations

(1) and (2) for 0<a<%, ‘-#o a constant, and G, T, and s not too large.
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ORBIT TRANSFER PROBLEMS

The above thecory may be applied almost directly to the problem
of transfer from one circular orbit to another. For transfers involving
an initial thrusting phasc on departure from a circular orbit followed by
a coasting phase and a subsequent thrusting .phasc to establish the final
circular orbit, it is only necessary to choosc the thrusting angles and
thrust durations so that the energy and momentum values at the beginuing

and end of tha coasting phase are identical. Figure 2 illustrates a
sample transfer.

/— Final Thrusting Phase

e, 7/

T
. Ez?”‘z!\ 2)
- - '
’ \hqu'z')"}\)
P \ Coasting Phase
£ \‘/ E - E
Je \ 1 2
2
! h, =1
: 1 2
R ]

Initial Thrusting Phase

FIGURE 2




321

The final boundary condition of the second thrusting phase may be satisfied
by interpreting it as an initial condition and then considering the motion
in negative time. Becduse the various cquations were non-dimensionalized

with regard to the initial orbit, it is necessary to examine the conversion

factors between quantities megsured in the ;¥ 1 system ard the p ¢ = 1

P .
system. Dcnoting the p [ quantities by primes, and defining K = 753’ the

* i
conversion factors are:

(pi = 1 quantity) x conv. factor = (pf = 1 quantity)
E K E'
-L
h K * h'
2 '
a K‘-g a
T K 2 T!
-1 ,
length K length

When these conversion factors are utilized, the non-dimensional equations

are sufficient to define the transfer maneuver.
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CORRECTIONS TO PROGRESS REPORT NO. 4

"APPLICATION OF THE TWO FIXED CENTER PROBLEM
TO LUNAR TRAJECTORIES"

By

Mary Payne

The conclusions reached from the old data were slightly
different from those based on the newer data. The corrected
conclusions are to be found on the first page of these
corrections. This page corrects the conclusions found on
pages 236 and 237 in Progress Report'No. 4,

The data presented on pages 248 and 249, Tables II and
III, in Progress Report No. 4 are to be replaced by the

tables presented here.
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The conclusions on the relative merits of the various methods are to be
revised as follows:

A and C afe btest for long range on the return leg

B and C have a slight superiority for midcourse

D is best in moon reference, on the first leg and for short range
on thée return leg.

E and F are inferior almost everywhere
It may be noted that the deviations in moon reference are approximately
100 times as large as for corresponding deviations in earth reference.
This is perhaps to be expected since the ratio of earth to moon mass
is 80, and hence the terms neglected in moon reference should be

approximately 80 times as large as those neglected in earth reference.
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